An Algebraic Construction of Boundary Quantum Field Theory View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-04

AUTHORS

Roberto Longo, Edward Witten

ABSTRACT

We build up local, time translation covariant Boundary Quantum Field Theory nets of von Neumann algebras \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal A_V}$$\end{document} on the Minkowski half-plane M+ starting with a local conformal net \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal A}$$\end{document} of von Neumann algebras on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb R}$$\end{document} and an element V of a unitary semigroup \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal E(\mathcal A)}$$\end{document} associated with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal A}$$\end{document}. The case V = 1 reduces to the net \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal A_+}$$\end{document} considered by Rehren and one of the authors; if the vacuum character of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal A}$$\end{document} is summable, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal A_V}$$\end{document} is locally isomorphic to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal A_+}$$\end{document}. We discuss the structure of the semigroup \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal E(\mathcal A)}$$\end{document}. By using a one-particle version of Borchers theorem and standard subspace analysis, we provide an abstract analog of the Beurling-Lax theorem that allows us to describe, in particular, all unitaries on the one-particle Hilbert space whose second quantization promotion belongs to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal E(\mathcal A^{(0)})}$$\end{document} with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal A^{(0)}}$$\end{document} the U(1)-current net. Each such unitary is attached to a scattering function or, more generally, to a symmetric inner function. We then obtain families of models via any Buchholz-Mack-Todorov extension of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal A^{(0)}}$$\end{document}. A further family of models comes from the Ising model. More... »

PAGES

213-232

References to SciGraph publications

  • 2009-02. How to Remove the Boundary in CFT – An Operator Algebraic Procedure in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2007-02. Nuclearity and Thermal States in Conformal Field Theory in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1949-12. On two problems concerning linear transformations in hilbert space in ACTA MATHEMATICA
  • 1959-06. Translation invariant spaces in ACTA MATHEMATICA
  • 1992-01. The CPT-theorem in two-dimensional theories of local observables in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1998-03. Extensions of Conformal Nets¶and Superselection Structures in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2003-05. Polarization-Free Quantum Fields and Interaction in LETTERS IN MATHEMATICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00220-010-1133-5

    DOI

    http://dx.doi.org/10.1007/s00220-010-1133-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1032595813


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Rome Tor Vergata", 
              "id": "https://www.grid.ac/institutes/grid.6530.0", 
              "name": [
                "Dipartimento di Matematica, Universit\u00e0 di Roma \u201cTor Vergata\u201d, Via della Ricerca Scientifica, 1, I-00133, Roma, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Longo", 
            "givenName": "Roberto", 
            "id": "sg:person.015662155267.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015662155267.67"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Advanced Study", 
              "id": "https://www.grid.ac/institutes/grid.78989.37", 
              "name": [
                "Institute for Advanced Study, School of Natural Sciences, Einstein Drive, 08540, Princeton, NJ, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Witten", 
            "givenName": "Edward", 
            "id": "sg:person.016240210261.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016240210261.17"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02559553", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004323154", 
              "https://doi.org/10.1007/bf02559553"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1025772304804", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005458850", 
              "https://doi.org/10.1023/a:1025772304804"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-008-0459-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005908393", 
              "https://doi.org/10.1007/s00220-008-0459-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-008-0459-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005908393", 
              "https://doi.org/10.1007/s00220-008-0459-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0003-4916(79)90391-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019263166"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0920-5632(88)90367-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020898071"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-006-0127-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021394804", 
              "https://doi.org/10.1007/s00220-006-0127-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-006-0127-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021394804", 
              "https://doi.org/10.1007/s00220-006-0127-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02395019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028282094", 
              "https://doi.org/10.1007/bf02395019"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002200050297", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031364011", 
              "https://doi.org/10.1007/s002200050297"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.48.853", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032998641"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.48.853", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032998641"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02099011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038469875", 
              "https://doi.org/10.1007/bf02099011"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02099011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038469875", 
              "https://doi.org/10.1007/bf02099011"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.47.3405", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052239911"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.47.3405", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052239911"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0129055x02001387", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062897938"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0129055x04002163", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062898014"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0129055x05002388", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062898036"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2011-04", 
        "datePublishedReg": "2011-04-01", 
        "description": "We build up local, time translation covariant Boundary Quantum Field Theory nets of von Neumann algebras \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\\mathcal A_V}$$\\end{document} on the Minkowski half-plane M+ starting with a local conformal net \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\\mathcal A}$$\\end{document} of von Neumann algebras on \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\\mathbb R}$$\\end{document} and an element V of a unitary semigroup \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\\mathcal E(\\mathcal A)}$$\\end{document} associated with \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\\mathcal A}$$\\end{document}. The case V = 1 reduces to the net \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\\mathcal A_+}$$\\end{document} considered by Rehren and one of the authors; if the vacuum character of \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\\mathcal A}$$\\end{document} is summable, \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\\mathcal A_V}$$\\end{document} is locally isomorphic to \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\\mathcal A_+}$$\\end{document}. We discuss the structure of the semigroup \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\\mathcal E(\\mathcal A)}$$\\end{document}. By using a one-particle version of Borchers theorem and standard subspace analysis, we provide an abstract analog of the Beurling-Lax theorem that allows us to describe, in particular, all unitaries on the one-particle Hilbert space whose second quantization promotion belongs to \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\\mathcal E(\\mathcal A^{(0)})}$$\\end{document} with \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\\mathcal A^{(0)}}$$\\end{document} the U(1)-current net. Each such unitary is attached to a scattering function or, more generally, to a symmetric inner function. We then obtain families of models via any Buchholz-Mack-Todorov extension of \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\\mathcal A^{(0)}}$$\\end{document}. A further family of models comes from the Ising model.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00220-010-1133-5", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136216", 
            "issn": [
              "0010-3616", 
              "1432-0916"
            ], 
            "name": "Communications in Mathematical Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "303"
          }
        ], 
        "name": "An Algebraic Construction of Boundary Quantum Field Theory", 
        "pagination": "213-232", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "9b48a533df06acc93d6c3148081b8a841652ba2d40ae0aa8133c2e3cb72c85a0"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00220-010-1133-5"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1032595813"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00220-010-1133-5", 
          "https://app.dimensions.ai/details/publication/pub.1032595813"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T14:10", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000513.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs00220-010-1133-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00220-010-1133-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00220-010-1133-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00220-010-1133-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00220-010-1133-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    120 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00220-010-1133-5 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nab02fed3540b4f27b5032094494e0fd3
    4 schema:citation sg:pub.10.1007/bf02099011
    5 sg:pub.10.1007/bf02395019
    6 sg:pub.10.1007/bf02559553
    7 sg:pub.10.1007/s00220-006-0127-9
    8 sg:pub.10.1007/s00220-008-0459-8
    9 sg:pub.10.1007/s002200050297
    10 sg:pub.10.1023/a:1025772304804
    11 https://doi.org/10.1016/0003-4916(79)90391-9
    12 https://doi.org/10.1016/0920-5632(88)90367-2
    13 https://doi.org/10.1103/physrevd.47.3405
    14 https://doi.org/10.1103/physrevd.48.853
    15 https://doi.org/10.1142/s0129055x02001387
    16 https://doi.org/10.1142/s0129055x04002163
    17 https://doi.org/10.1142/s0129055x05002388
    18 schema:datePublished 2011-04
    19 schema:datePublishedReg 2011-04-01
    20 schema:description We build up local, time translation covariant Boundary Quantum Field Theory nets of von Neumann algebras \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal A_V}$$\end{document} on the Minkowski half-plane M+ starting with a local conformal net \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal A}$$\end{document} of von Neumann algebras on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb R}$$\end{document} and an element V of a unitary semigroup \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal E(\mathcal A)}$$\end{document} associated with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal A}$$\end{document}. The case V = 1 reduces to the net \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal A_+}$$\end{document} considered by Rehren and one of the authors; if the vacuum character of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal A}$$\end{document} is summable, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal A_V}$$\end{document} is locally isomorphic to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal A_+}$$\end{document}. We discuss the structure of the semigroup \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal E(\mathcal A)}$$\end{document}. By using a one-particle version of Borchers theorem and standard subspace analysis, we provide an abstract analog of the Beurling-Lax theorem that allows us to describe, in particular, all unitaries on the one-particle Hilbert space whose second quantization promotion belongs to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal E(\mathcal A^{(0)})}$$\end{document} with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal A^{(0)}}$$\end{document} the U(1)-current net. Each such unitary is attached to a scattering function or, more generally, to a symmetric inner function. We then obtain families of models via any Buchholz-Mack-Todorov extension of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal A^{(0)}}$$\end{document}. A further family of models comes from the Ising model.
    21 schema:genre research_article
    22 schema:inLanguage en
    23 schema:isAccessibleForFree true
    24 schema:isPartOf Nb7f7581b28714c03965ea6dab02702a7
    25 Ne87bd7f1a47d4c6598c0d35e1ebabbdf
    26 sg:journal.1136216
    27 schema:name An Algebraic Construction of Boundary Quantum Field Theory
    28 schema:pagination 213-232
    29 schema:productId N1784f7cff96847bd814f6fe293be7d40
    30 Ne2d627f52980484caeaf657856dcf1ea
    31 Nf436f71142d54c06a9c71aa2ba239ebf
    32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032595813
    33 https://doi.org/10.1007/s00220-010-1133-5
    34 schema:sdDatePublished 2019-04-10T14:10
    35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    36 schema:sdPublisher Nb65a84ae04fb4b21b7fc457ab441ce3b
    37 schema:url http://link.springer.com/10.1007%2Fs00220-010-1133-5
    38 sgo:license sg:explorer/license/
    39 sgo:sdDataset articles
    40 rdf:type schema:ScholarlyArticle
    41 N06f3932b523249ca9369dbb22b774c62 rdf:first sg:person.016240210261.17
    42 rdf:rest rdf:nil
    43 N1784f7cff96847bd814f6fe293be7d40 schema:name readcube_id
    44 schema:value 9b48a533df06acc93d6c3148081b8a841652ba2d40ae0aa8133c2e3cb72c85a0
    45 rdf:type schema:PropertyValue
    46 Nab02fed3540b4f27b5032094494e0fd3 rdf:first sg:person.015662155267.67
    47 rdf:rest N06f3932b523249ca9369dbb22b774c62
    48 Nb65a84ae04fb4b21b7fc457ab441ce3b schema:name Springer Nature - SN SciGraph project
    49 rdf:type schema:Organization
    50 Nb7f7581b28714c03965ea6dab02702a7 schema:volumeNumber 303
    51 rdf:type schema:PublicationVolume
    52 Ne2d627f52980484caeaf657856dcf1ea schema:name doi
    53 schema:value 10.1007/s00220-010-1133-5
    54 rdf:type schema:PropertyValue
    55 Ne87bd7f1a47d4c6598c0d35e1ebabbdf schema:issueNumber 1
    56 rdf:type schema:PublicationIssue
    57 Nf436f71142d54c06a9c71aa2ba239ebf schema:name dimensions_id
    58 schema:value pub.1032595813
    59 rdf:type schema:PropertyValue
    60 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    61 schema:name Mathematical Sciences
    62 rdf:type schema:DefinedTerm
    63 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    64 schema:name Pure Mathematics
    65 rdf:type schema:DefinedTerm
    66 sg:journal.1136216 schema:issn 0010-3616
    67 1432-0916
    68 schema:name Communications in Mathematical Physics
    69 rdf:type schema:Periodical
    70 sg:person.015662155267.67 schema:affiliation https://www.grid.ac/institutes/grid.6530.0
    71 schema:familyName Longo
    72 schema:givenName Roberto
    73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015662155267.67
    74 rdf:type schema:Person
    75 sg:person.016240210261.17 schema:affiliation https://www.grid.ac/institutes/grid.78989.37
    76 schema:familyName Witten
    77 schema:givenName Edward
    78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016240210261.17
    79 rdf:type schema:Person
    80 sg:pub.10.1007/bf02099011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038469875
    81 https://doi.org/10.1007/bf02099011
    82 rdf:type schema:CreativeWork
    83 sg:pub.10.1007/bf02395019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028282094
    84 https://doi.org/10.1007/bf02395019
    85 rdf:type schema:CreativeWork
    86 sg:pub.10.1007/bf02559553 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004323154
    87 https://doi.org/10.1007/bf02559553
    88 rdf:type schema:CreativeWork
    89 sg:pub.10.1007/s00220-006-0127-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021394804
    90 https://doi.org/10.1007/s00220-006-0127-9
    91 rdf:type schema:CreativeWork
    92 sg:pub.10.1007/s00220-008-0459-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005908393
    93 https://doi.org/10.1007/s00220-008-0459-8
    94 rdf:type schema:CreativeWork
    95 sg:pub.10.1007/s002200050297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031364011
    96 https://doi.org/10.1007/s002200050297
    97 rdf:type schema:CreativeWork
    98 sg:pub.10.1023/a:1025772304804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005458850
    99 https://doi.org/10.1023/a:1025772304804
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1016/0003-4916(79)90391-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019263166
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1016/0920-5632(88)90367-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020898071
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1103/physrevd.47.3405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052239911
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1103/physrevd.48.853 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032998641
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1142/s0129055x02001387 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062897938
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1142/s0129055x04002163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062898014
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1142/s0129055x05002388 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062898036
    114 rdf:type schema:CreativeWork
    115 https://www.grid.ac/institutes/grid.6530.0 schema:alternateName University of Rome Tor Vergata
    116 schema:name Dipartimento di Matematica, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica, 1, I-00133, Roma, Italy
    117 rdf:type schema:Organization
    118 https://www.grid.ac/institutes/grid.78989.37 schema:alternateName Institute for Advanced Study
    119 schema:name Institute for Advanced Study, School of Natural Sciences, Einstein Drive, 08540, Princeton, NJ, USA
    120 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...