Relaxation Times for Hamiltonian Systems View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-07

AUTHORS

Alberto Mario Maiocchi, Andrea Carati

ABSTRACT

Usually, the relaxation times of a gas are estimated in the frame of the Boltzmann equation. In this paper, instead, we deal with the relaxation problem in the frame of the dynamical theory of Hamiltonian systems, in which the definition itself of a relaxation time is an open question. We introduce a lower bound for the relaxation time, and give a general theorem for estimating it. Then we give an application to a concrete model of an interacting gas, in which the lower bound turns out to be of the order of magnitude of the relaxation times observed in dilute gases. More... »

PAGES

427-445

References to SciGraph publications

Journal

TITLE

Communications in Mathematical Physics

ISSUE

2

VOLUME

297

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00220-010-1039-2

DOI

http://dx.doi.org/10.1007/s00220-010-1039-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1022339099


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Milan", 
          "id": "https://www.grid.ac/institutes/grid.4708.b", 
          "name": [
            "Dipartimento di Matematica, Universit\u00e0 di Milano, Via Saldini 50, 20133, Milano, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maiocchi", 
        "givenName": "Alberto Mario", 
        "id": "sg:person.015366730074.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015366730074.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Milan", 
          "id": "https://www.grid.ac/institutes/grid.4708.b", 
          "name": [
            "Dipartimento di Matematica, Universit\u00e0 di Milano, Via Saldini 50, 20133, Milano, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Carati", 
        "givenName": "Andrea", 
        "id": "sg:person.01364554612.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364554612.00"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10955-007-9332-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012453702", 
          "https://doi.org/10.1007/s10955-007-9332-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-1039-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022237469", 
          "https://doi.org/10.1007/978-1-4612-1039-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-1039-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022237469", 
          "https://doi.org/10.1007/978-1-4612-1039-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.17.5.315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048475791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1703906", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057773848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.12.570", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063091773"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-07", 
    "datePublishedReg": "2010-07-01", 
    "description": "Usually, the relaxation times of a gas are estimated in the frame of the Boltzmann equation. In this paper, instead, we deal with the relaxation problem in the frame of the dynamical theory of Hamiltonian systems, in which the definition itself of a relaxation time is an open question. We introduce a lower bound for the relaxation time, and give a general theorem for estimating it. Then we give an application to a concrete model of an interacting gas, in which the lower bound turns out to be of the order of magnitude of the relaxation times observed in dilute gases.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00220-010-1039-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136216", 
        "issn": [
          "0010-3616", 
          "1432-0916"
        ], 
        "name": "Communications in Mathematical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "297"
      }
    ], 
    "name": "Relaxation Times for Hamiltonian Systems", 
    "pagination": "427-445", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6a6d20de475b16c408586ba417b2e34214fd00c1f7c77736ba827b1c52d08330"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00220-010-1039-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1022339099"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00220-010-1039-2", 
      "https://app.dimensions.ai/details/publication/pub.1022339099"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54319_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00220-010-1039-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00220-010-1039-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00220-010-1039-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00220-010-1039-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00220-010-1039-2'


 

This table displays all metadata directly associated to this object as RDF triples.

85 TRIPLES      21 PREDICATES      32 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00220-010-1039-2 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Ne43ae5d5163d47f3b9b3150ef08132d3
4 schema:citation sg:pub.10.1007/978-1-4612-1039-9
5 sg:pub.10.1007/s10955-007-9332-y
6 https://doi.org/10.1063/1.1703906
7 https://doi.org/10.1073/pnas.17.5.315
8 https://doi.org/10.1143/jpsj.12.570
9 schema:datePublished 2010-07
10 schema:datePublishedReg 2010-07-01
11 schema:description Usually, the relaxation times of a gas are estimated in the frame of the Boltzmann equation. In this paper, instead, we deal with the relaxation problem in the frame of the dynamical theory of Hamiltonian systems, in which the definition itself of a relaxation time is an open question. We introduce a lower bound for the relaxation time, and give a general theorem for estimating it. Then we give an application to a concrete model of an interacting gas, in which the lower bound turns out to be of the order of magnitude of the relaxation times observed in dilute gases.
12 schema:genre research_article
13 schema:inLanguage en
14 schema:isAccessibleForFree true
15 schema:isPartOf N07b075831e2a4f1f823fda35a46d72ee
16 Na2c7c808403847279bf5e9871a513313
17 sg:journal.1136216
18 schema:name Relaxation Times for Hamiltonian Systems
19 schema:pagination 427-445
20 schema:productId N76f2baf948a349c9b76f322d4b54eb7d
21 N7d487948e24f42ab857b16d9cc7617d1
22 Nd49251fe2c894e82a0f390d43e032165
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022339099
24 https://doi.org/10.1007/s00220-010-1039-2
25 schema:sdDatePublished 2019-04-11T10:18
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher N77a6e5e257e948b4a331862d26f73b9f
28 schema:url http://link.springer.com/10.1007%2Fs00220-010-1039-2
29 sgo:license sg:explorer/license/
30 sgo:sdDataset articles
31 rdf:type schema:ScholarlyArticle
32 N07b075831e2a4f1f823fda35a46d72ee schema:issueNumber 2
33 rdf:type schema:PublicationIssue
34 N7603befb0302464b95aa4c582759b875 rdf:first sg:person.01364554612.00
35 rdf:rest rdf:nil
36 N76f2baf948a349c9b76f322d4b54eb7d schema:name doi
37 schema:value 10.1007/s00220-010-1039-2
38 rdf:type schema:PropertyValue
39 N77a6e5e257e948b4a331862d26f73b9f schema:name Springer Nature - SN SciGraph project
40 rdf:type schema:Organization
41 N7d487948e24f42ab857b16d9cc7617d1 schema:name readcube_id
42 schema:value 6a6d20de475b16c408586ba417b2e34214fd00c1f7c77736ba827b1c52d08330
43 rdf:type schema:PropertyValue
44 Na2c7c808403847279bf5e9871a513313 schema:volumeNumber 297
45 rdf:type schema:PublicationVolume
46 Nd49251fe2c894e82a0f390d43e032165 schema:name dimensions_id
47 schema:value pub.1022339099
48 rdf:type schema:PropertyValue
49 Ne43ae5d5163d47f3b9b3150ef08132d3 rdf:first sg:person.015366730074.31
50 rdf:rest N7603befb0302464b95aa4c582759b875
51 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
52 schema:name Mathematical Sciences
53 rdf:type schema:DefinedTerm
54 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
55 schema:name Statistics
56 rdf:type schema:DefinedTerm
57 sg:journal.1136216 schema:issn 0010-3616
58 1432-0916
59 schema:name Communications in Mathematical Physics
60 rdf:type schema:Periodical
61 sg:person.01364554612.00 schema:affiliation https://www.grid.ac/institutes/grid.4708.b
62 schema:familyName Carati
63 schema:givenName Andrea
64 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364554612.00
65 rdf:type schema:Person
66 sg:person.015366730074.31 schema:affiliation https://www.grid.ac/institutes/grid.4708.b
67 schema:familyName Maiocchi
68 schema:givenName Alberto Mario
69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015366730074.31
70 rdf:type schema:Person
71 sg:pub.10.1007/978-1-4612-1039-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022237469
72 https://doi.org/10.1007/978-1-4612-1039-9
73 rdf:type schema:CreativeWork
74 sg:pub.10.1007/s10955-007-9332-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1012453702
75 https://doi.org/10.1007/s10955-007-9332-y
76 rdf:type schema:CreativeWork
77 https://doi.org/10.1063/1.1703906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057773848
78 rdf:type schema:CreativeWork
79 https://doi.org/10.1073/pnas.17.5.315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048475791
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1143/jpsj.12.570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063091773
82 rdf:type schema:CreativeWork
83 https://www.grid.ac/institutes/grid.4708.b schema:alternateName University of Milan
84 schema:name Dipartimento di Matematica, Università di Milano, Via Saldini 50, 20133, Milano, Italy
85 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...