Non-Birational Twisted Derived Equivalences in Abelian GLSMs View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-03

AUTHORS

Andrei Căldăraru, Jacques Distler, Simeon Hellerman, Tony Pantev, Eric Sharpe

ABSTRACT

In this paper we discuss some examples of abelian gauged linear sigma models realizing twisted derived equivalences between non-birational spaces, and realizing geometries in novel fashions. Examples of gauged linear sigma models with non-birational Kähler phases are a relatively new phenomenon. Most of our examples involve gauged linear sigma models for complete intersections of quadric hypersurfaces, though we also discuss some more general cases and their interpretation. We also propose a more general understanding of the relationship between Kähler phases of gauged linear sigma models, namely that they are related by (and realize) Kuznetsov’s ‘homological projective duality.’ Along the way, we shall see how ‘noncommutative spaces’ (in Kontsevich’s sense) are realized physically in gauged linear sigma models, providing examples of new types of conformal field theories. Throughout, the physical realization of stacks plays a key role in interpreting physical structures appearing in GLSMs, and we find that stacks are implicitly much more common in GLSMs than previously realized. More... »

PAGES

605-645

References to SciGraph publications

  • 2007-05-25. Aspects of non-abelian gauge dynamics in two-dimensional 𝒩 = (2,2) theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2007-06. A relation between the parabolic Chern characters of the de Rham bundles in MATHEMATISCHE ANNALEN
  • 2003-12-03. D-branes in Landau-Ginzburg models and algebraic geometry in JOURNAL OF HIGH ENERGY PHYSICS
  • 2006-02-17. A-Model correlators from the Coulomb branch in JOURNAL OF HIGH ENERGY PHYSICS
  • 1992. Algebraic Geometry, A First Course in NONE
  • 2010-12-12. Derived Categories of Coherent Sheaves and Triangulated Categories of Singularities in ALGEBRA, ARITHMETIC, AND GEOMETRY
  • 2001-10-24. Don't panic! closed string tachyons in ALE spacetimes in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00220-009-0974-2

    DOI

    http://dx.doi.org/10.1007/s00220-009-0974-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1035717698


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Wisconsin\u2013Madison", 
              "id": "https://www.grid.ac/institutes/grid.14003.36", 
              "name": [
                "Mathematics Department, University of Wisconsin, 53706-1388, Madison, WI, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "C\u0103ld\u0103raru", 
            "givenName": "Andrei", 
            "id": "sg:person.0713264610.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713264610.38"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "The University of Texas at Austin", 
              "id": "https://www.grid.ac/institutes/grid.89336.37", 
              "name": [
                "Department of Physics, University of Texas, Austin, 78712-0264, Austin, TX, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Distler", 
            "givenName": "Jacques", 
            "id": "sg:person.01141564604.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141564604.58"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Advanced Study", 
              "id": "https://www.grid.ac/institutes/grid.78989.37", 
              "name": [
                "Institute for Advanced Study, School of Natural Sciences, 08540, Princeton, NJ, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hellerman", 
            "givenName": "Simeon", 
            "id": "sg:person.013064422437.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013064422437.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Pennsylvania", 
              "id": "https://www.grid.ac/institutes/grid.25879.31", 
              "name": [
                "Department of Mathematics, University of Pennsylvania, 19104-6395, Philadelphia, PA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pantev", 
            "givenName": "Tony", 
            "id": "sg:person.0657007000.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657007000.04"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Virginia Tech", 
              "id": "https://www.grid.ac/institutes/grid.438526.e", 
              "name": [
                "Physics Department, Virginia Tech, 24061, Blacksburg, VA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sharpe", 
            "givenName": "Eric", 
            "id": "sg:person.01222005664.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222005664.40"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.geomphys.2008.07.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000645703"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0550-3213(99)00535-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001798036"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0370-2693(00)01376-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002127802"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00208-006-0078-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003204472", 
              "https://doi.org/10.1007/s00208-006-0078-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00208-006-0078-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003204472", 
              "https://doi.org/10.1007/s00208-006-0078-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(93)90033-l", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004765127"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(93)90033-l", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004765127"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2007/05/079", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005771754", 
              "https://doi.org/10.1088/1126-6708/2007/05/079"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-2189-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008629539", 
              "https://doi.org/10.1007/978-1-4757-2189-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-2189-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008629539", 
              "https://doi.org/10.1007/978-1-4757-2189-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0550-3213(02)00039-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009976672"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-8176-4747-6_16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014912480", 
              "https://doi.org/10.1007/978-0-8176-4747-6_16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-8176-4747-6_16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014912480", 
              "https://doi.org/10.1007/978-0-8176-4747-6_16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ansens.2007.05.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023225557"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0002-9939-07-08840-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023962766"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0393-0440(94)00048-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024216178"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jpaa.2003.10.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026512209"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0001-8708(83)90025-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027203699"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.aim.2008.03.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028820888"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2001/10/029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029745980", 
              "https://doi.org/10.1088/1126-6708/2001/10/029"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1070/sm2006v197n12abeh003824", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032278680"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1515/crll.2002.022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033916216"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.aim.2006.06.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038669851"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.nuclphysb.2005.10.035", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038813303"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2003/12/005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051358292", 
              "https://doi.org/10.1088/1126-6708/2003/12/005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2006/02/044", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052965664", 
              "https://doi.org/10.1088/1126-6708/2006/02/044"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2006/02/044", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052965664", 
              "https://doi.org/10.1088/1126-6708/2006/02/044"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1374448", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057700303"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4153/cmb-2005-016-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072272595"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4310/atmp.2003.v7.n3.a1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072457087"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4310/atmp.2006.v10.n1.a4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072457163"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4310/atmp.2007.v11.n5.a2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072457206"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9780511623936", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098701340"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.17323/1609-4514-2003-3-1-1-36", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1111586860"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.17323/1609-4514-2003-3-1-1-36", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1111586860"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2010-03", 
        "datePublishedReg": "2010-03-01", 
        "description": "In this paper we discuss some examples of abelian gauged linear sigma models realizing twisted derived equivalences between non-birational spaces, and realizing geometries in novel fashions. Examples of gauged linear sigma models with non-birational K\u00e4hler phases are a relatively new phenomenon. Most of our examples involve gauged linear sigma models for complete intersections of quadric hypersurfaces, though we also discuss some more general cases and their interpretation. We also propose a more general understanding of the relationship between K\u00e4hler phases of gauged linear sigma models, namely that they are related by (and realize) Kuznetsov\u2019s \u2018homological projective duality.\u2019 Along the way, we shall see how \u2018noncommutative spaces\u2019 (in Kontsevich\u2019s sense) are realized physically in gauged linear sigma models, providing examples of new types of conformal field theories. Throughout, the physical realization of stacks plays a key role in interpreting physical structures appearing in GLSMs, and we find that stacks are implicitly much more common in GLSMs than previously realized.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00220-009-0974-2", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136216", 
            "issn": [
              "0010-3616", 
              "1432-0916"
            ], 
            "name": "Communications in Mathematical Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "294"
          }
        ], 
        "name": "Non-Birational Twisted Derived Equivalences in Abelian GLSMs", 
        "pagination": "605-645", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "aa2544a99e7eb2c1ebc871fbd08a35bc2acd395bd7f452026c083c56beb766e7"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00220-009-0974-2"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1035717698"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00220-009-0974-2", 
          "https://app.dimensions.ai/details/publication/pub.1035717698"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:53", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89793_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs00220-009-0974-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00220-009-0974-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00220-009-0974-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00220-009-0974-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00220-009-0974-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    195 TRIPLES      21 PREDICATES      56 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00220-009-0974-2 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N941c605948f04718995a1eb82d238b07
    4 schema:citation sg:pub.10.1007/978-0-8176-4747-6_16
    5 sg:pub.10.1007/978-1-4757-2189-8
    6 sg:pub.10.1007/s00208-006-0078-7
    7 sg:pub.10.1088/1126-6708/2001/10/029
    8 sg:pub.10.1088/1126-6708/2003/12/005
    9 sg:pub.10.1088/1126-6708/2006/02/044
    10 sg:pub.10.1088/1126-6708/2007/05/079
    11 https://doi.org/10.1016/0001-8708(83)90025-7
    12 https://doi.org/10.1016/0393-0440(94)00048-9
    13 https://doi.org/10.1016/0550-3213(93)90033-l
    14 https://doi.org/10.1016/j.aim.2006.06.004
    15 https://doi.org/10.1016/j.aim.2008.03.007
    16 https://doi.org/10.1016/j.ansens.2007.05.001
    17 https://doi.org/10.1016/j.geomphys.2008.07.010
    18 https://doi.org/10.1016/j.jpaa.2003.10.004
    19 https://doi.org/10.1016/j.nuclphysb.2005.10.035
    20 https://doi.org/10.1016/s0370-2693(00)01376-9
    21 https://doi.org/10.1016/s0550-3213(02)00039-1
    22 https://doi.org/10.1016/s0550-3213(99)00535-0
    23 https://doi.org/10.1017/cbo9780511623936
    24 https://doi.org/10.1063/1.1374448
    25 https://doi.org/10.1070/sm2006v197n12abeh003824
    26 https://doi.org/10.1090/s0002-9939-07-08840-5
    27 https://doi.org/10.1515/crll.2002.022
    28 https://doi.org/10.17323/1609-4514-2003-3-1-1-36
    29 https://doi.org/10.4153/cmb-2005-016-7
    30 https://doi.org/10.4310/atmp.2003.v7.n3.a1
    31 https://doi.org/10.4310/atmp.2006.v10.n1.a4
    32 https://doi.org/10.4310/atmp.2007.v11.n5.a2
    33 schema:datePublished 2010-03
    34 schema:datePublishedReg 2010-03-01
    35 schema:description In this paper we discuss some examples of abelian gauged linear sigma models realizing twisted derived equivalences between non-birational spaces, and realizing geometries in novel fashions. Examples of gauged linear sigma models with non-birational Kähler phases are a relatively new phenomenon. Most of our examples involve gauged linear sigma models for complete intersections of quadric hypersurfaces, though we also discuss some more general cases and their interpretation. We also propose a more general understanding of the relationship between Kähler phases of gauged linear sigma models, namely that they are related by (and realize) Kuznetsov’s ‘homological projective duality.’ Along the way, we shall see how ‘noncommutative spaces’ (in Kontsevich’s sense) are realized physically in gauged linear sigma models, providing examples of new types of conformal field theories. Throughout, the physical realization of stacks plays a key role in interpreting physical structures appearing in GLSMs, and we find that stacks are implicitly much more common in GLSMs than previously realized.
    36 schema:genre research_article
    37 schema:inLanguage en
    38 schema:isAccessibleForFree true
    39 schema:isPartOf N0c5cdb1be72e4dd9844dc8eb9a7fd2bf
    40 N3eba2c4680e24f239c8c610c991f64db
    41 sg:journal.1136216
    42 schema:name Non-Birational Twisted Derived Equivalences in Abelian GLSMs
    43 schema:pagination 605-645
    44 schema:productId N2b2d4c5930c142cebe286c614afb25e9
    45 Ne02484263b164b3dab0b4ba571a32545
    46 Nfaac283fb934458bb483c110c024a619
    47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035717698
    48 https://doi.org/10.1007/s00220-009-0974-2
    49 schema:sdDatePublished 2019-04-11T09:53
    50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    51 schema:sdPublisher Nd544e0ce6fea451794909308399d20f4
    52 schema:url http://link.springer.com/10.1007%2Fs00220-009-0974-2
    53 sgo:license sg:explorer/license/
    54 sgo:sdDataset articles
    55 rdf:type schema:ScholarlyArticle
    56 N0c5cdb1be72e4dd9844dc8eb9a7fd2bf schema:volumeNumber 294
    57 rdf:type schema:PublicationVolume
    58 N2b2d4c5930c142cebe286c614afb25e9 schema:name readcube_id
    59 schema:value aa2544a99e7eb2c1ebc871fbd08a35bc2acd395bd7f452026c083c56beb766e7
    60 rdf:type schema:PropertyValue
    61 N3eba2c4680e24f239c8c610c991f64db schema:issueNumber 3
    62 rdf:type schema:PublicationIssue
    63 N682a071b91974325980c7802bdc8578b rdf:first sg:person.01222005664.40
    64 rdf:rest rdf:nil
    65 N8df8bab8d4694bdfb638896f525112e7 rdf:first sg:person.0657007000.04
    66 rdf:rest N682a071b91974325980c7802bdc8578b
    67 N941c605948f04718995a1eb82d238b07 rdf:first sg:person.0713264610.38
    68 rdf:rest Ndad4b7403e57402c9dd6eec9229bfe4e
    69 Nb1dc793daf0b4b36b47b9b7eaabe7034 rdf:first sg:person.013064422437.41
    70 rdf:rest N8df8bab8d4694bdfb638896f525112e7
    71 Nd544e0ce6fea451794909308399d20f4 schema:name Springer Nature - SN SciGraph project
    72 rdf:type schema:Organization
    73 Ndad4b7403e57402c9dd6eec9229bfe4e rdf:first sg:person.01141564604.58
    74 rdf:rest Nb1dc793daf0b4b36b47b9b7eaabe7034
    75 Ne02484263b164b3dab0b4ba571a32545 schema:name doi
    76 schema:value 10.1007/s00220-009-0974-2
    77 rdf:type schema:PropertyValue
    78 Nfaac283fb934458bb483c110c024a619 schema:name dimensions_id
    79 schema:value pub.1035717698
    80 rdf:type schema:PropertyValue
    81 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    82 schema:name Mathematical Sciences
    83 rdf:type schema:DefinedTerm
    84 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    85 schema:name Pure Mathematics
    86 rdf:type schema:DefinedTerm
    87 sg:journal.1136216 schema:issn 0010-3616
    88 1432-0916
    89 schema:name Communications in Mathematical Physics
    90 rdf:type schema:Periodical
    91 sg:person.01141564604.58 schema:affiliation https://www.grid.ac/institutes/grid.89336.37
    92 schema:familyName Distler
    93 schema:givenName Jacques
    94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141564604.58
    95 rdf:type schema:Person
    96 sg:person.01222005664.40 schema:affiliation https://www.grid.ac/institutes/grid.438526.e
    97 schema:familyName Sharpe
    98 schema:givenName Eric
    99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222005664.40
    100 rdf:type schema:Person
    101 sg:person.013064422437.41 schema:affiliation https://www.grid.ac/institutes/grid.78989.37
    102 schema:familyName Hellerman
    103 schema:givenName Simeon
    104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013064422437.41
    105 rdf:type schema:Person
    106 sg:person.0657007000.04 schema:affiliation https://www.grid.ac/institutes/grid.25879.31
    107 schema:familyName Pantev
    108 schema:givenName Tony
    109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657007000.04
    110 rdf:type schema:Person
    111 sg:person.0713264610.38 schema:affiliation https://www.grid.ac/institutes/grid.14003.36
    112 schema:familyName Căldăraru
    113 schema:givenName Andrei
    114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713264610.38
    115 rdf:type schema:Person
    116 sg:pub.10.1007/978-0-8176-4747-6_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014912480
    117 https://doi.org/10.1007/978-0-8176-4747-6_16
    118 rdf:type schema:CreativeWork
    119 sg:pub.10.1007/978-1-4757-2189-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008629539
    120 https://doi.org/10.1007/978-1-4757-2189-8
    121 rdf:type schema:CreativeWork
    122 sg:pub.10.1007/s00208-006-0078-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003204472
    123 https://doi.org/10.1007/s00208-006-0078-7
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1088/1126-6708/2001/10/029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029745980
    126 https://doi.org/10.1088/1126-6708/2001/10/029
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1088/1126-6708/2003/12/005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051358292
    129 https://doi.org/10.1088/1126-6708/2003/12/005
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1088/1126-6708/2006/02/044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052965664
    132 https://doi.org/10.1088/1126-6708/2006/02/044
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1088/1126-6708/2007/05/079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005771754
    135 https://doi.org/10.1088/1126-6708/2007/05/079
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1016/0001-8708(83)90025-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027203699
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1016/0393-0440(94)00048-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024216178
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1016/0550-3213(93)90033-l schema:sameAs https://app.dimensions.ai/details/publication/pub.1004765127
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1016/j.aim.2006.06.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038669851
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1016/j.aim.2008.03.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028820888
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1016/j.ansens.2007.05.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023225557
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1016/j.geomphys.2008.07.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000645703
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1016/j.jpaa.2003.10.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026512209
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1016/j.nuclphysb.2005.10.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038813303
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1016/s0370-2693(00)01376-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002127802
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1016/s0550-3213(02)00039-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009976672
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1016/s0550-3213(99)00535-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001798036
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1017/cbo9780511623936 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098701340
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1063/1.1374448 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057700303
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1070/sm2006v197n12abeh003824 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032278680
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1090/s0002-9939-07-08840-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023962766
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1515/crll.2002.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033916216
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.17323/1609-4514-2003-3-1-1-36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111586860
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.4153/cmb-2005-016-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072272595
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.4310/atmp.2003.v7.n3.a1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072457087
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.4310/atmp.2006.v10.n1.a4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072457163
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.4310/atmp.2007.v11.n5.a2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072457206
    180 rdf:type schema:CreativeWork
    181 https://www.grid.ac/institutes/grid.14003.36 schema:alternateName University of Wisconsin–Madison
    182 schema:name Mathematics Department, University of Wisconsin, 53706-1388, Madison, WI, USA
    183 rdf:type schema:Organization
    184 https://www.grid.ac/institutes/grid.25879.31 schema:alternateName University of Pennsylvania
    185 schema:name Department of Mathematics, University of Pennsylvania, 19104-6395, Philadelphia, PA, USA
    186 rdf:type schema:Organization
    187 https://www.grid.ac/institutes/grid.438526.e schema:alternateName Virginia Tech
    188 schema:name Physics Department, Virginia Tech, 24061, Blacksburg, VA, USA
    189 rdf:type schema:Organization
    190 https://www.grid.ac/institutes/grid.78989.37 schema:alternateName Institute for Advanced Study
    191 schema:name Institute for Advanced Study, School of Natural Sciences, 08540, Princeton, NJ, USA
    192 rdf:type schema:Organization
    193 https://www.grid.ac/institutes/grid.89336.37 schema:alternateName The University of Texas at Austin
    194 schema:name Department of Physics, University of Texas, Austin, 78712-0264, Austin, TX, USA
    195 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...