Ontology type: schema:ScholarlyArticle Open Access: True
2009-11-19
AUTHORSElizabeth Gasparim, Chiu-Chu Melissa Liu
ABSTRACTThe Nekrasov conjecture predicts a relation between the partition function for N = 2 supersymmetric Yang–Mills theory and the Seiberg-Witten prepotential. For instantons on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^4}$$\end{document}, the conjecture was proved, independently and using different methods, by Nekrasov-Okounkov and Nakajima-Yoshioka. We prove a generalized version of the conjecture for instantons on noncompact toric surfaces. More... »
PAGES661
http://scigraph.springernature.com/pub.10.1007/s00220-009-0948-4
DOIhttp://dx.doi.org/10.1007/s00220-009-0948-4
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1047869405
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "School of Mathematics, The University of Edinburgh, James Clerk Maxwell Building, The King\u2019s Buildings, Mayfield Road, EH9 3JZ, Edinburgh, Scotland",
"id": "http://www.grid.ac/institutes/grid.4305.2",
"name": [
"School of Mathematics, The University of Edinburgh, James Clerk Maxwell Building, The King\u2019s Buildings, Mayfield Road, EH9 3JZ, Edinburgh, Scotland"
],
"type": "Organization"
},
"familyName": "Gasparim",
"givenName": "Elizabeth",
"id": "sg:person.015437072503.33",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015437072503.33"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Mathematics, Columbia University, 2990 Broadway, 10027, New York, NY, USA",
"id": "http://www.grid.ac/institutes/grid.21729.3f",
"name": [
"Department of Mathematics, Columbia University, 2990 Broadway, 10027, New York, NY, USA"
],
"type": "Organization"
},
"familyName": "Liu",
"givenName": "Chiu-Chu Melissa",
"id": "sg:person.014255546641.82",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014255546641.82"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf01450081",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025053903",
"https://doi.org/10.1007/bf01450081"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00031-005-0406-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017209703",
"https://doi.org/10.1007/s00031-005-0406-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/0-8176-4478-4_5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039495663",
"https://doi.org/10.1007/0-8176-4478-4_5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01212289",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053674268",
"https://doi.org/10.1007/bf01212289"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1088/1126-6708/2003/05/054",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053140959",
"https://doi.org/10.1088/1126-6708/2003/05/054"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00222-005-0444-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046597097",
"https://doi.org/10.1007/s00222-005-0444-1"
],
"type": "CreativeWork"
}
],
"datePublished": "2009-11-19",
"datePublishedReg": "2009-11-19",
"description": "The Nekrasov conjecture predicts a relation between the partition function for N\u00a0=\u00a02 supersymmetric Yang\u2013Mills theory and the Seiberg-Witten prepotential. For instantons on \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\mathbb{R}^4}$$\\end{document}, the conjecture was proved, independently and using different methods, by Nekrasov-Okounkov and Nakajima-Yoshioka. We prove a generalized version of the conjecture for instantons on noncompact toric surfaces.",
"genre": "article",
"id": "sg:pub.10.1007/s00220-009-0948-4",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1136216",
"issn": [
"0010-3616",
"1432-0916"
],
"name": "Communications in Mathematical Physics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "3",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "293"
}
],
"keywords": [
"supersymmetric Yang-Mills theory",
"toric surfaces",
"Yang-Mills theory",
"Seiberg-Witten",
"partition function",
"generalized version",
"conjecture",
"instantons",
"different methods",
"theory",
"version",
"function",
"surface",
"relation",
"method"
],
"name": "The Nekrasov Conjecture for Toric Surfaces",
"pagination": "661",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1047869405"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00220-009-0948-4"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00220-009-0948-4",
"https://app.dimensions.ai/details/publication/pub.1047869405"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:25",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_482.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s00220-009-0948-4"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00220-009-0948-4'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00220-009-0948-4'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00220-009-0948-4'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00220-009-0948-4'
This table displays all metadata directly associated to this object as RDF triples.
107 TRIPLES
22 PREDICATES
46 URIs
32 LITERALS
6 BLANK NODES