The Nekrasov Conjecture for Toric Surfaces View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2009-11-19

AUTHORS

Elizabeth Gasparim, Chiu-Chu Melissa Liu

ABSTRACT

The Nekrasov conjecture predicts a relation between the partition function for N = 2 supersymmetric Yang–Mills theory and the Seiberg-Witten prepotential. For instantons on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^4}$$\end{document}, the conjecture was proved, independently and using different methods, by Nekrasov-Okounkov and Nakajima-Yoshioka. We prove a generalized version of the conjecture for instantons on noncompact toric surfaces. More... »

PAGES

661

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00220-009-0948-4

DOI

http://dx.doi.org/10.1007/s00220-009-0948-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047869405


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Mathematics, The University of Edinburgh, James Clerk Maxwell Building, The King\u2019s Buildings, Mayfield Road, EH9 3JZ, Edinburgh, Scotland", 
          "id": "http://www.grid.ac/institutes/grid.4305.2", 
          "name": [
            "School of Mathematics, The University of Edinburgh, James Clerk Maxwell Building, The King\u2019s Buildings, Mayfield Road, EH9 3JZ, Edinburgh, Scotland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gasparim", 
        "givenName": "Elizabeth", 
        "id": "sg:person.015437072503.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015437072503.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Columbia University, 2990 Broadway, 10027, New York, NY, USA", 
          "id": "http://www.grid.ac/institutes/grid.21729.3f", 
          "name": [
            "Department of Mathematics, Columbia University, 2990 Broadway, 10027, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Chiu-Chu Melissa", 
        "id": "sg:person.014255546641.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014255546641.82"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01450081", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025053903", 
          "https://doi.org/10.1007/bf01450081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00031-005-0406-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017209703", 
          "https://doi.org/10.1007/s00031-005-0406-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/0-8176-4478-4_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039495663", 
          "https://doi.org/10.1007/0-8176-4478-4_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01212289", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053674268", 
          "https://doi.org/10.1007/bf01212289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2003/05/054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053140959", 
          "https://doi.org/10.1088/1126-6708/2003/05/054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00222-005-0444-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046597097", 
          "https://doi.org/10.1007/s00222-005-0444-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-11-19", 
    "datePublishedReg": "2009-11-19", 
    "description": "The Nekrasov conjecture predicts a relation between the partition function for N\u00a0=\u00a02 supersymmetric Yang\u2013Mills theory and the Seiberg-Witten prepotential. For instantons on \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\mathbb{R}^4}$$\\end{document}, the conjecture was proved, independently and using different methods, by Nekrasov-Okounkov and Nakajima-Yoshioka. We prove a generalized version of the conjecture for instantons on noncompact toric surfaces.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00220-009-0948-4", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136216", 
        "issn": [
          "0010-3616", 
          "1432-0916"
        ], 
        "name": "Communications in Mathematical Physics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "293"
      }
    ], 
    "keywords": [
      "supersymmetric Yang-Mills theory", 
      "toric surfaces", 
      "Yang-Mills theory", 
      "Seiberg-Witten", 
      "partition function", 
      "generalized version", 
      "conjecture", 
      "instantons", 
      "different methods", 
      "theory", 
      "version", 
      "function", 
      "surface", 
      "relation", 
      "method"
    ], 
    "name": "The Nekrasov Conjecture for Toric Surfaces", 
    "pagination": "661", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047869405"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00220-009-0948-4"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00220-009-0948-4", 
      "https://app.dimensions.ai/details/publication/pub.1047869405"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_482.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00220-009-0948-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00220-009-0948-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00220-009-0948-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00220-009-0948-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00220-009-0948-4'


 

This table displays all metadata directly associated to this object as RDF triples.

107 TRIPLES      22 PREDICATES      46 URIs      32 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00220-009-0948-4 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N542e716dcf8a47389a60109127d8d82f
4 schema:citation sg:pub.10.1007/0-8176-4478-4_5
5 sg:pub.10.1007/bf01212289
6 sg:pub.10.1007/bf01450081
7 sg:pub.10.1007/s00031-005-0406-0
8 sg:pub.10.1007/s00222-005-0444-1
9 sg:pub.10.1088/1126-6708/2003/05/054
10 schema:datePublished 2009-11-19
11 schema:datePublishedReg 2009-11-19
12 schema:description The Nekrasov conjecture predicts a relation between the partition function for N = 2 supersymmetric Yang–Mills theory and the Seiberg-Witten prepotential. For instantons on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^4}$$\end{document}, the conjecture was proved, independently and using different methods, by Nekrasov-Okounkov and Nakajima-Yoshioka. We prove a generalized version of the conjecture for instantons on noncompact toric surfaces.
13 schema:genre article
14 schema:inLanguage en
15 schema:isAccessibleForFree true
16 schema:isPartOf N35cfef8e4a9844b08aefca931165e34b
17 Ndfa44284274e4a0982bed9745f24c73e
18 sg:journal.1136216
19 schema:keywords Seiberg-Witten
20 Yang-Mills theory
21 conjecture
22 different methods
23 function
24 generalized version
25 instantons
26 method
27 partition function
28 relation
29 supersymmetric Yang-Mills theory
30 surface
31 theory
32 toric surfaces
33 version
34 schema:name The Nekrasov Conjecture for Toric Surfaces
35 schema:pagination 661
36 schema:productId N36a5854a01724a9abdb6d8e395abeef8
37 N63520aea0ad5456d9c28c91bbbae3a42
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047869405
39 https://doi.org/10.1007/s00220-009-0948-4
40 schema:sdDatePublished 2022-05-20T07:25
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher Nc002ead5249747a8b5355a844d925d58
43 schema:url https://doi.org/10.1007/s00220-009-0948-4
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N35cfef8e4a9844b08aefca931165e34b schema:volumeNumber 293
48 rdf:type schema:PublicationVolume
49 N36a5854a01724a9abdb6d8e395abeef8 schema:name dimensions_id
50 schema:value pub.1047869405
51 rdf:type schema:PropertyValue
52 N542e716dcf8a47389a60109127d8d82f rdf:first sg:person.015437072503.33
53 rdf:rest N763b10d3e0c84286b50a7d77fcd03851
54 N63520aea0ad5456d9c28c91bbbae3a42 schema:name doi
55 schema:value 10.1007/s00220-009-0948-4
56 rdf:type schema:PropertyValue
57 N763b10d3e0c84286b50a7d77fcd03851 rdf:first sg:person.014255546641.82
58 rdf:rest rdf:nil
59 Nc002ead5249747a8b5355a844d925d58 schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 Ndfa44284274e4a0982bed9745f24c73e schema:issueNumber 3
62 rdf:type schema:PublicationIssue
63 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
64 schema:name Mathematical Sciences
65 rdf:type schema:DefinedTerm
66 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
67 schema:name Pure Mathematics
68 rdf:type schema:DefinedTerm
69 sg:journal.1136216 schema:issn 0010-3616
70 1432-0916
71 schema:name Communications in Mathematical Physics
72 schema:publisher Springer Nature
73 rdf:type schema:Periodical
74 sg:person.014255546641.82 schema:affiliation grid-institutes:grid.21729.3f
75 schema:familyName Liu
76 schema:givenName Chiu-Chu Melissa
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014255546641.82
78 rdf:type schema:Person
79 sg:person.015437072503.33 schema:affiliation grid-institutes:grid.4305.2
80 schema:familyName Gasparim
81 schema:givenName Elizabeth
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015437072503.33
83 rdf:type schema:Person
84 sg:pub.10.1007/0-8176-4478-4_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039495663
85 https://doi.org/10.1007/0-8176-4478-4_5
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/bf01212289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053674268
88 https://doi.org/10.1007/bf01212289
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/bf01450081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025053903
91 https://doi.org/10.1007/bf01450081
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/s00031-005-0406-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017209703
94 https://doi.org/10.1007/s00031-005-0406-0
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/s00222-005-0444-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046597097
97 https://doi.org/10.1007/s00222-005-0444-1
98 rdf:type schema:CreativeWork
99 sg:pub.10.1088/1126-6708/2003/05/054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053140959
100 https://doi.org/10.1088/1126-6708/2003/05/054
101 rdf:type schema:CreativeWork
102 grid-institutes:grid.21729.3f schema:alternateName Department of Mathematics, Columbia University, 2990 Broadway, 10027, New York, NY, USA
103 schema:name Department of Mathematics, Columbia University, 2990 Broadway, 10027, New York, NY, USA
104 rdf:type schema:Organization
105 grid-institutes:grid.4305.2 schema:alternateName School of Mathematics, The University of Edinburgh, James Clerk Maxwell Building, The King’s Buildings, Mayfield Road, EH9 3JZ, Edinburgh, Scotland
106 schema:name School of Mathematics, The University of Edinburgh, James Clerk Maxwell Building, The King’s Buildings, Mayfield Road, EH9 3JZ, Edinburgh, Scotland
107 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...