Entire Solutions of Hydrodynamical Equations with Exponential Dissipation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-01

AUTHORS

Claude Bardos, Uriel Frisch, Walter Pauls, Samriddhi Sankar Ray, Edriss S. Titi

ABSTRACT

We consider a modification of the three-dimensional Navier–Stokes equations and other hydrodynamical evolution equations with space-periodic initial conditions in which the usual Laplacian of the dissipation operator is replaced by an operator whose Fourier symbol grows exponentially as at high wavenumbers |k|. Using estimates in suitable classes of analytic functions, we show that the solutions with initially finite energy become immediately entire in the space variables and that the Fourier coefficients decay faster than for any C < 1/(2 ln 2). The same result holds for the one-dimensional Burgers equation with exponential dissipation but can be improved: heuristic arguments and very precise simulations, analyzed by the method of asymptotic extrapolation of van der Hoeven, indicate that the leading-order asymptotics is precisely of the above form with C = C* = 1/ ln 2. The same behavior with a universal constant C* is conjectured for the Navier–Stokes equations with exponential dissipation in any space dimension. This universality prevents the strong growth of intermittency in the far dissipation range which is obtained for ordinary Navier–Stokes turbulence. Possible applications to improved spectral simulations are briefly discussed. More... »

PAGES

519-543

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00220-009-0916-z

DOI

http://dx.doi.org/10.1007/s00220-009-0916-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1046649050


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Sorbonne University", 
          "id": "https://www.grid.ac/institutes/grid.462844.8", 
          "name": [
            "Universit\u00e9 Denis Diderot and Laboratoire J.L. Lions, Universit\u00e9 Pierre et Marie Curie, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bardos", 
        "givenName": "Claude", 
        "id": "sg:person.014224365351.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014224365351.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "UNS, CNRS, Laboratoire Cassiop\u00e9e, OCA, BP 4229, 06304, Nice cedex 4, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Frisch", 
        "givenName": "Uriel", 
        "id": "sg:person.011615073661.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011615073661.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Dynamics and Self Organization", 
          "id": "https://www.grid.ac/institutes/grid.419514.c", 
          "name": [
            "Max Planck Institute for Dynamics and Self-Organization, G\u00f6ttingen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pauls", 
        "givenName": "Walter", 
        "id": "sg:person.01347125013.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01347125013.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Institute of Science Bangalore", 
          "id": "https://www.grid.ac/institutes/grid.34980.36", 
          "name": [
            "Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ray", 
        "givenName": "Samriddhi Sankar", 
        "id": "sg:person.0661006402.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661006402.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Weizmann Institute of Science", 
          "id": "https://www.grid.ac/institutes/grid.13992.30", 
          "name": [
            "Department of Mathematics and Department of Mechanical and Aerospace Engineering, University of Irvine, 92697-3875, Irvine, CA, USA", 
            "Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, 76100, Rehovot, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Titi", 
        "givenName": "Edriss S.", 
        "id": "sg:person.0774550114.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774550114.65"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1080/01630569308816523", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015669039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10955-007-9307-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018377725", 
          "https://doi.org/10.1007/s10955-007-9307-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1236(89)90015-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024562153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jdeq.2000.3927", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025239164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03091920412331312411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025920082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/rm2007v062n03abeh004410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027980335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03605309808821336", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032610844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2789(93)90195-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032829159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2789(93)90195-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032829159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/pl00001493", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040747975", 
          "https://doi.org/10.1007/pl00001493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/crelle.2008.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041900626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jsc.2009.01.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043896756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1027308602344", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048162189", 
          "https://doi.org/10.1023/a:1027308602344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.144501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049040265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.144501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049040265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jcph.2002.6995", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049789669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0273-0979-07-01184-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052642561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0485(1992)022<1033:rtsfls>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052969697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112086000356", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054026100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112083001159", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054037948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1762412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057817455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.868526", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058120706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/rm2005v060n05abeh003735", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058197867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0951-7715/9/6/016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059111046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.23.2673", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060469261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.23.2673", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060469261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.3424338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062120383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3792/pja/1195521421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071428292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4171/jems/111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072317684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611970425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098556634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511613203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098696269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/chel/369", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098755841"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-01", 
    "datePublishedReg": "2010-01-01", 
    "description": "We consider a modification of the three-dimensional Navier\u2013Stokes equations and other hydrodynamical evolution equations with space-periodic initial conditions in which the usual Laplacian of the dissipation operator is replaced by an operator whose Fourier symbol grows exponentially as at high wavenumbers |k|. Using estimates in suitable classes of analytic functions, we show that the solutions with initially finite energy become immediately entire in the space variables and that the Fourier coefficients decay faster than for any C < 1/(2 ln 2). The same result holds for the one-dimensional Burgers equation with exponential dissipation but can be improved: heuristic arguments and very precise simulations, analyzed by the method of asymptotic extrapolation of van der Hoeven, indicate that the leading-order asymptotics is precisely of the above form with C = C* = 1/ ln 2. The same behavior with a universal constant C* is conjectured for the Navier\u2013Stokes equations with exponential dissipation in any space dimension. This universality prevents the strong growth of intermittency in the far dissipation range which is obtained for ordinary Navier\u2013Stokes turbulence. Possible applications to improved spectral simulations are briefly discussed.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00220-009-0916-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136216", 
        "issn": [
          "0010-3616", 
          "1432-0916"
        ], 
        "name": "Communications in Mathematical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "293"
      }
    ], 
    "name": "Entire Solutions of Hydrodynamical Equations with Exponential Dissipation", 
    "pagination": "519-543", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "de378eb5bf61ced835a3735fc320a8333a968cb249d486dbd07d8ace98a71bb4"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00220-009-0916-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1046649050"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00220-009-0916-z", 
      "https://app.dimensions.ai/details/publication/pub.1046649050"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13087_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00220-009-0916-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00220-009-0916-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00220-009-0916-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00220-009-0916-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00220-009-0916-z'


 

This table displays all metadata directly associated to this object as RDF triples.

192 TRIPLES      21 PREDICATES      56 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00220-009-0916-z schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N7833e2cbb5bf41c2927032e608d04453
4 schema:citation sg:pub.10.1007/pl00001493
5 sg:pub.10.1007/s10955-007-9307-z
6 sg:pub.10.1023/a:1027308602344
7 https://doi.org/10.1006/jcph.2002.6995
8 https://doi.org/10.1006/jdeq.2000.3927
9 https://doi.org/10.1016/0022-1236(89)90015-3
10 https://doi.org/10.1016/0167-2789(93)90195-7
11 https://doi.org/10.1016/j.jsc.2009.01.001
12 https://doi.org/10.1017/cbo9780511613203
13 https://doi.org/10.1017/s0022112083001159
14 https://doi.org/10.1017/s0022112086000356
15 https://doi.org/10.1063/1.1762412
16 https://doi.org/10.1063/1.868526
17 https://doi.org/10.1070/rm2005v060n05abeh003735
18 https://doi.org/10.1070/rm2007v062n03abeh004410
19 https://doi.org/10.1080/01630569308816523
20 https://doi.org/10.1080/03091920412331312411
21 https://doi.org/10.1080/03605309808821336
22 https://doi.org/10.1088/0951-7715/9/6/016
23 https://doi.org/10.1090/chel/369
24 https://doi.org/10.1090/s0273-0979-07-01184-6
25 https://doi.org/10.1103/physreva.23.2673
26 https://doi.org/10.1103/physrevlett.101.144501
27 https://doi.org/10.1115/1.3424338
28 https://doi.org/10.1137/1.9781611970425
29 https://doi.org/10.1175/1520-0485(1992)022<1033:rtsfls>2.0.co;2
30 https://doi.org/10.1515/crelle.2008.022
31 https://doi.org/10.3792/pja/1195521421
32 https://doi.org/10.4171/jems/111
33 schema:datePublished 2010-01
34 schema:datePublishedReg 2010-01-01
35 schema:description We consider a modification of the three-dimensional Navier–Stokes equations and other hydrodynamical evolution equations with space-periodic initial conditions in which the usual Laplacian of the dissipation operator is replaced by an operator whose Fourier symbol grows exponentially as at high wavenumbers |k|. Using estimates in suitable classes of analytic functions, we show that the solutions with initially finite energy become immediately entire in the space variables and that the Fourier coefficients decay faster than for any C < 1/(2 ln 2). The same result holds for the one-dimensional Burgers equation with exponential dissipation but can be improved: heuristic arguments and very precise simulations, analyzed by the method of asymptotic extrapolation of van der Hoeven, indicate that the leading-order asymptotics is precisely of the above form with C = C* = 1/ ln 2. The same behavior with a universal constant C* is conjectured for the Navier–Stokes equations with exponential dissipation in any space dimension. This universality prevents the strong growth of intermittency in the far dissipation range which is obtained for ordinary Navier–Stokes turbulence. Possible applications to improved spectral simulations are briefly discussed.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree true
39 schema:isPartOf N5926fa2545624c97bbaede7fc25bfaa8
40 N8d19e44e590044ec9100c7fc237adaf1
41 sg:journal.1136216
42 schema:name Entire Solutions of Hydrodynamical Equations with Exponential Dissipation
43 schema:pagination 519-543
44 schema:productId N740f7c5493ff4431a92051247e4023a8
45 Nacde164179344c17a6c9a1955036a7ea
46 Nf3296c1c0210473da316192138751313
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046649050
48 https://doi.org/10.1007/s00220-009-0916-z
49 schema:sdDatePublished 2019-04-11T14:29
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher Nb606584d53d14e0c9ad45e709b36d52e
52 schema:url http://link.springer.com/10.1007%2Fs00220-009-0916-z
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N3113f8ac979442fc8418cf88679db730 rdf:first sg:person.011615073661.47
57 rdf:rest Nb82f55617bc940e19bc5e6ba7c9cb603
58 N5926fa2545624c97bbaede7fc25bfaa8 schema:volumeNumber 293
59 rdf:type schema:PublicationVolume
60 N740f7c5493ff4431a92051247e4023a8 schema:name dimensions_id
61 schema:value pub.1046649050
62 rdf:type schema:PropertyValue
63 N7833e2cbb5bf41c2927032e608d04453 rdf:first sg:person.014224365351.76
64 rdf:rest N3113f8ac979442fc8418cf88679db730
65 N8d19e44e590044ec9100c7fc237adaf1 schema:issueNumber 2
66 rdf:type schema:PublicationIssue
67 Nacde164179344c17a6c9a1955036a7ea schema:name doi
68 schema:value 10.1007/s00220-009-0916-z
69 rdf:type schema:PropertyValue
70 Nb606584d53d14e0c9ad45e709b36d52e schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 Nb82f55617bc940e19bc5e6ba7c9cb603 rdf:first sg:person.01347125013.01
73 rdf:rest Nd7884c020a9b4d6bb5d661b0403e98c2
74 Nd7884c020a9b4d6bb5d661b0403e98c2 rdf:first sg:person.0661006402.05
75 rdf:rest Nf9a93e599be94f98a50c7388a8a73ce9
76 Nf3296c1c0210473da316192138751313 schema:name readcube_id
77 schema:value de378eb5bf61ced835a3735fc320a8333a968cb249d486dbd07d8ace98a71bb4
78 rdf:type schema:PropertyValue
79 Nf9a93e599be94f98a50c7388a8a73ce9 rdf:first sg:person.0774550114.65
80 rdf:rest rdf:nil
81 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
82 schema:name Mathematical Sciences
83 rdf:type schema:DefinedTerm
84 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
85 schema:name Pure Mathematics
86 rdf:type schema:DefinedTerm
87 sg:journal.1136216 schema:issn 0010-3616
88 1432-0916
89 schema:name Communications in Mathematical Physics
90 rdf:type schema:Periodical
91 sg:person.011615073661.47 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
92 schema:familyName Frisch
93 schema:givenName Uriel
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011615073661.47
95 rdf:type schema:Person
96 sg:person.01347125013.01 schema:affiliation https://www.grid.ac/institutes/grid.419514.c
97 schema:familyName Pauls
98 schema:givenName Walter
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01347125013.01
100 rdf:type schema:Person
101 sg:person.014224365351.76 schema:affiliation https://www.grid.ac/institutes/grid.462844.8
102 schema:familyName Bardos
103 schema:givenName Claude
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014224365351.76
105 rdf:type schema:Person
106 sg:person.0661006402.05 schema:affiliation https://www.grid.ac/institutes/grid.34980.36
107 schema:familyName Ray
108 schema:givenName Samriddhi Sankar
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661006402.05
110 rdf:type schema:Person
111 sg:person.0774550114.65 schema:affiliation https://www.grid.ac/institutes/grid.13992.30
112 schema:familyName Titi
113 schema:givenName Edriss S.
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774550114.65
115 rdf:type schema:Person
116 sg:pub.10.1007/pl00001493 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040747975
117 https://doi.org/10.1007/pl00001493
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s10955-007-9307-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1018377725
120 https://doi.org/10.1007/s10955-007-9307-z
121 rdf:type schema:CreativeWork
122 sg:pub.10.1023/a:1027308602344 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048162189
123 https://doi.org/10.1023/a:1027308602344
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1006/jcph.2002.6995 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049789669
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1006/jdeq.2000.3927 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025239164
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/0022-1236(89)90015-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024562153
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/0167-2789(93)90195-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032829159
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.jsc.2009.01.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043896756
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1017/cbo9780511613203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098696269
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1017/s0022112083001159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054037948
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1017/s0022112086000356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054026100
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1063/1.1762412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057817455
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1063/1.868526 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058120706
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1070/rm2005v060n05abeh003735 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058197867
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1070/rm2007v062n03abeh004410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027980335
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1080/01630569308816523 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015669039
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1080/03091920412331312411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025920082
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1080/03605309808821336 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032610844
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1088/0951-7715/9/6/016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059111046
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1090/chel/369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098755841
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1090/s0273-0979-07-01184-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052642561
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1103/physreva.23.2673 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060469261
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1103/physrevlett.101.144501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049040265
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1115/1.3424338 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062120383
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1137/1.9781611970425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098556634
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1175/1520-0485(1992)022<1033:rtsfls>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052969697
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1515/crelle.2008.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041900626
172 rdf:type schema:CreativeWork
173 https://doi.org/10.3792/pja/1195521421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071428292
174 rdf:type schema:CreativeWork
175 https://doi.org/10.4171/jems/111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072317684
176 rdf:type schema:CreativeWork
177 https://www.grid.ac/institutes/grid.13992.30 schema:alternateName Weizmann Institute of Science
178 schema:name Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, 76100, Rehovot, Israel
179 Department of Mathematics and Department of Mechanical and Aerospace Engineering, University of Irvine, 92697-3875, Irvine, CA, USA
180 rdf:type schema:Organization
181 https://www.grid.ac/institutes/grid.34980.36 schema:alternateName Indian Institute of Science Bangalore
182 schema:name Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, India
183 rdf:type schema:Organization
184 https://www.grid.ac/institutes/grid.419514.c schema:alternateName Max Planck Institute for Dynamics and Self Organization
185 schema:name Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
186 rdf:type schema:Organization
187 https://www.grid.ac/institutes/grid.4444.0 schema:alternateName French National Centre for Scientific Research
188 schema:name UNS, CNRS, Laboratoire Cassiopée, OCA, BP 4229, 06304, Nice cedex 4, France
189 rdf:type schema:Organization
190 https://www.grid.ac/institutes/grid.462844.8 schema:alternateName Sorbonne University
191 schema:name Université Denis Diderot and Laboratoire J.L. Lions, Université Pierre et Marie Curie, Paris, France
192 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...