2-Matrix versus Complex Matrix Model, Integrals over the Unitary Group as Triangular Integrals View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2006-05

AUTHORS

B. Eynard, A. Prats Ferrer

ABSTRACT

We prove that the 2-hermitian matrix model and the complex-matrix model obey the same loop equations, and as a byproduct, we find a formula for Itzykzon-Zuber type integrals over the unitary group. Integrals over U(n) are rewritten as gaussian integrals over triangular matrices and then computed explicitly. That formula is an efficient alternative to the former Shatashvili's formula. More... »

PAGES

115-144

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00220-006-1541-8

DOI

http://dx.doi.org/10.1007/s00220-006-1541-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1022150037


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "L'Institut de physique th\u00e9orique", 
          "id": "https://www.grid.ac/institutes/grid.457338.e", 
          "name": [
            "Service de Physique Th\u00e9orique de Saclay, CEA/DSM/SPhT - CNRS/SPM/URA 2306, 91191, Gif-sur-Yvette Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eynard", 
        "givenName": "B.", 
        "id": "sg:person.012141030126.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012141030126.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Barcelona", 
          "id": "https://www.grid.ac/institutes/grid.5841.8", 
          "name": [
            "Departament d'Estructura i constituents de la Mat\u00e8ria, Universitad Barcelona, Av. Diagonal 647, 08028, Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ferrer", 
        "givenName": "A. Prats", 
        "id": "sg:person.016552552046.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016552552046.89"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1088/0305-4470/36/28/304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000754357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/31/19/010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006489750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002200200663", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015620516", 
          "https://doi.org/10.1007/s002200200663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02097004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016744176", 
          "https://doi.org/10.1007/bf02097004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02097004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016744176", 
          "https://doi.org/10.1007/bf02097004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0021-9045(02)00044-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018768034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0021-9045(02)00044-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018768034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-005-1505-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023170949", 
          "https://doi.org/10.1007/s00220-005-1505-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0550-3213(97)00452-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027091156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1027667645", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-0979-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027667645", 
          "https://doi.org/10.1007/978-1-4612-0979-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-0979-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027667645", 
          "https://doi.org/10.1007/978-1-4612-0979-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(86)90433-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029616280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(86)90433-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029616280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-003-0934-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034451210", 
          "https://doi.org/10.1007/s00220-003-0934-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(94)00084-g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036715607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/1-4020-4531-x_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041848963", 
          "https://doi.org/10.1007/1-4020-4531-x_8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2003/11/018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041955504", 
          "https://doi.org/10.1088/1126-6708/2003/11/018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2003/01/051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042260300", 
          "https://doi.org/10.1088/1126-6708/2003/01/051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01208498", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042390474", 
          "https://doi.org/10.1007/bf01208498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01208498", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042390474", 
          "https://doi.org/10.1007/bf01208498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(93)91063-s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044666531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(93)91063-s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044666531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11040-005-9000-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049634711", 
          "https://doi.org/10.1007/s11040-005-9000-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11040-005-9000-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049634711", 
          "https://doi.org/10.1007/s11040-005-9000-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1704292", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057774233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.524438", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058101458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0217732392002913", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062918816"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-05", 
    "datePublishedReg": "2006-05-01", 
    "description": "We prove that the 2-hermitian matrix model and the complex-matrix model obey the same loop equations, and as a byproduct, we find a formula for Itzykzon-Zuber type integrals over the unitary group. Integrals over U(n) are rewritten as gaussian integrals over triangular matrices and then computed explicitly. That formula is an efficient alternative to the former Shatashvili's formula.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00220-006-1541-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136216", 
        "issn": [
          "0010-3616", 
          "1432-0916"
        ], 
        "name": "Communications in Mathematical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "264"
      }
    ], 
    "name": "2-Matrix versus Complex Matrix Model, Integrals over the Unitary Group as Triangular Integrals", 
    "pagination": "115-144", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "69874229dec7ed71a40b415b65561b373394921a0cde6ae499d3d36677f96de5"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00220-006-1541-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1022150037"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00220-006-1541-8", 
      "https://app.dimensions.ai/details/publication/pub.1022150037"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000512.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00220-006-1541-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00220-006-1541-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00220-006-1541-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00220-006-1541-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00220-006-1541-8'


 

This table displays all metadata directly associated to this object as RDF triples.

143 TRIPLES      21 PREDICATES      48 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00220-006-1541-8 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Nab224824912e46a8bbb0d54987750e2e
4 schema:citation sg:pub.10.1007/1-4020-4531-x_8
5 sg:pub.10.1007/978-1-4612-0979-9
6 sg:pub.10.1007/bf01208498
7 sg:pub.10.1007/bf02097004
8 sg:pub.10.1007/s00220-003-0934-1
9 sg:pub.10.1007/s00220-005-1505-4
10 sg:pub.10.1007/s002200200663
11 sg:pub.10.1007/s11040-005-9000-x
12 sg:pub.10.1088/1126-6708/2003/01/051
13 sg:pub.10.1088/1126-6708/2003/11/018
14 https://app.dimensions.ai/details/publication/pub.1027667645
15 https://doi.org/10.1016/0370-1573(94)00084-g
16 https://doi.org/10.1016/0370-2693(93)91063-s
17 https://doi.org/10.1016/0375-9601(86)90433-0
18 https://doi.org/10.1016/s0021-9045(02)00044-8
19 https://doi.org/10.1016/s0550-3213(97)00452-5
20 https://doi.org/10.1063/1.1704292
21 https://doi.org/10.1063/1.524438
22 https://doi.org/10.1088/0305-4470/31/19/010
23 https://doi.org/10.1088/0305-4470/36/28/304
24 https://doi.org/10.1142/s0217732392002913
25 schema:datePublished 2006-05
26 schema:datePublishedReg 2006-05-01
27 schema:description We prove that the 2-hermitian matrix model and the complex-matrix model obey the same loop equations, and as a byproduct, we find a formula for Itzykzon-Zuber type integrals over the unitary group. Integrals over U(n) are rewritten as gaussian integrals over triangular matrices and then computed explicitly. That formula is an efficient alternative to the former Shatashvili's formula.
28 schema:genre research_article
29 schema:inLanguage en
30 schema:isAccessibleForFree true
31 schema:isPartOf N20001142f9c846ab89373f9ce38fdc57
32 Nbaa72fce7ae9400d9fa9f5213a99d09a
33 sg:journal.1136216
34 schema:name 2-Matrix versus Complex Matrix Model, Integrals over the Unitary Group as Triangular Integrals
35 schema:pagination 115-144
36 schema:productId N02a547aa09e7449e83f59508b0887790
37 N3131d34373574a929bd31f0f9c02ede4
38 Nfd39fa595458494ea753cff355749e2e
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022150037
40 https://doi.org/10.1007/s00220-006-1541-8
41 schema:sdDatePublished 2019-04-10T17:31
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher N1c6dd89654d14114bde8f867c7439709
44 schema:url http://link.springer.com/10.1007%2Fs00220-006-1541-8
45 sgo:license sg:explorer/license/
46 sgo:sdDataset articles
47 rdf:type schema:ScholarlyArticle
48 N02a547aa09e7449e83f59508b0887790 schema:name dimensions_id
49 schema:value pub.1022150037
50 rdf:type schema:PropertyValue
51 N1c6dd89654d14114bde8f867c7439709 schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 N20001142f9c846ab89373f9ce38fdc57 schema:volumeNumber 264
54 rdf:type schema:PublicationVolume
55 N3131d34373574a929bd31f0f9c02ede4 schema:name readcube_id
56 schema:value 69874229dec7ed71a40b415b65561b373394921a0cde6ae499d3d36677f96de5
57 rdf:type schema:PropertyValue
58 N969d77a4120f443d8aca281340f12fa5 rdf:first sg:person.016552552046.89
59 rdf:rest rdf:nil
60 Nab224824912e46a8bbb0d54987750e2e rdf:first sg:person.012141030126.44
61 rdf:rest N969d77a4120f443d8aca281340f12fa5
62 Nbaa72fce7ae9400d9fa9f5213a99d09a schema:issueNumber 1
63 rdf:type schema:PublicationIssue
64 Nfd39fa595458494ea753cff355749e2e schema:name doi
65 schema:value 10.1007/s00220-006-1541-8
66 rdf:type schema:PropertyValue
67 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
68 schema:name Mathematical Sciences
69 rdf:type schema:DefinedTerm
70 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
71 schema:name Statistics
72 rdf:type schema:DefinedTerm
73 sg:journal.1136216 schema:issn 0010-3616
74 1432-0916
75 schema:name Communications in Mathematical Physics
76 rdf:type schema:Periodical
77 sg:person.012141030126.44 schema:affiliation https://www.grid.ac/institutes/grid.457338.e
78 schema:familyName Eynard
79 schema:givenName B.
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012141030126.44
81 rdf:type schema:Person
82 sg:person.016552552046.89 schema:affiliation https://www.grid.ac/institutes/grid.5841.8
83 schema:familyName Ferrer
84 schema:givenName A. Prats
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016552552046.89
86 rdf:type schema:Person
87 sg:pub.10.1007/1-4020-4531-x_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041848963
88 https://doi.org/10.1007/1-4020-4531-x_8
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/978-1-4612-0979-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027667645
91 https://doi.org/10.1007/978-1-4612-0979-9
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/bf01208498 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042390474
94 https://doi.org/10.1007/bf01208498
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/bf02097004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016744176
97 https://doi.org/10.1007/bf02097004
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/s00220-003-0934-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034451210
100 https://doi.org/10.1007/s00220-003-0934-1
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/s00220-005-1505-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023170949
103 https://doi.org/10.1007/s00220-005-1505-4
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/s002200200663 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015620516
106 https://doi.org/10.1007/s002200200663
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/s11040-005-9000-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049634711
109 https://doi.org/10.1007/s11040-005-9000-x
110 rdf:type schema:CreativeWork
111 sg:pub.10.1088/1126-6708/2003/01/051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042260300
112 https://doi.org/10.1088/1126-6708/2003/01/051
113 rdf:type schema:CreativeWork
114 sg:pub.10.1088/1126-6708/2003/11/018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041955504
115 https://doi.org/10.1088/1126-6708/2003/11/018
116 rdf:type schema:CreativeWork
117 https://app.dimensions.ai/details/publication/pub.1027667645 schema:CreativeWork
118 https://doi.org/10.1016/0370-1573(94)00084-g schema:sameAs https://app.dimensions.ai/details/publication/pub.1036715607
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/0370-2693(93)91063-s schema:sameAs https://app.dimensions.ai/details/publication/pub.1044666531
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/0375-9601(86)90433-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029616280
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/s0021-9045(02)00044-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018768034
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/s0550-3213(97)00452-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027091156
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1063/1.1704292 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057774233
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1063/1.524438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058101458
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1088/0305-4470/31/19/010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006489750
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1088/0305-4470/36/28/304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000754357
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1142/s0217732392002913 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062918816
137 rdf:type schema:CreativeWork
138 https://www.grid.ac/institutes/grid.457338.e schema:alternateName L'Institut de physique théorique
139 schema:name Service de Physique Théorique de Saclay, CEA/DSM/SPhT - CNRS/SPM/URA 2306, 91191, Gif-sur-Yvette Cedex, France
140 rdf:type schema:Organization
141 https://www.grid.ac/institutes/grid.5841.8 schema:alternateName University of Barcelona
142 schema:name Departament d'Estructura i constituents de la Matèria, Universitad Barcelona, Av. Diagonal 647, 08028, Barcelona, Spain
143 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...