The Geometric Dual of a–Maximisation for Toric Sasaki–Einstein Manifolds View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2006-11

AUTHORS

Dario Martelli, James Sparks, Shing-Tung Yau

ABSTRACT

We show that the Reeb vector, and hence in particular the volume, of a Sasaki–Einstein metric on the base of a toric Calabi–Yau cone of complex dimension n may be computed by minimising a function Z on which depends only on the toric data that defines the singularity. In this way one can extract certain geometric information for a toric Sasaki–Einstein manifold without finding the metric explicitly. For complex dimension n = 3 the Reeb vector and the volume correspond to the R–symmetry and the a central charge of the AdS/CFT dual superconformal field theory, respectively. We therefore interpret this extremal problem as the geometric dual of a–maximisation. We illustrate our results with some examples, including the Yp,q singularities and the complex cone over the second del Pezzo surface. More... »

PAGES

39

References to SciGraph publications

  • 1987-06. On Kähler-Einstein metrics on certain Kähler manifolds withC1 (M)>0 in INVENTIONES MATHEMATICAE
  • 2002-12-27. Symmetries of Toric Duality in JOURNAL OF HIGH ENERGY PHYSICS
  • 1987. Einstein Manifolds in NONE
  • 2004-12-10. New checks and subtleties for AdS/CFT and a-maximization in JOURNAL OF HIGH ENERGY PHYSICS
  • 2005-02-03. Cascading RG flows from new Sasaki-Einstein manifolds in JOURNAL OF HIGH ENERGY PHYSICS
  • 2005-06-27. An infinite family of superconformal quiver gauge theories with Sasaki-Einstein duals in JOURNAL OF HIGH ENERGY PHYSICS
  • 1994-12. On the cone structure at infinity of Ricci flat manifolds with Euclidean volume growth and quadratic curvature decay in INVENTIONES MATHEMATICAE
  • 2006-02. Toric Geometry, Sasaki–Einstein Manifolds and a New Infinite Class of AdS/CFT Duals in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1987-03. Kähler-Einstein metrics on complex surfaces withC1>0 in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00220-006-0087-0

    DOI

    http://dx.doi.org/10.1007/s00220-006-0087-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1031002931


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "European Organization for Nuclear Research", 
              "id": "https://www.grid.ac/institutes/grid.9132.9", 
              "name": [
                "Department of Physics, CERN Theory Division, 1211, Geneva 23, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Martelli", 
            "givenName": "Dario", 
            "id": "sg:person.010105233122.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010105233122.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Department of Mathematics, Harvard University, One Oxford Street, 02138, Cambridge, MA, U.S.A", 
                "Jefferson Physical Laboratory, Harvard University, 02138, Cambridge, MA, U.S.A"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sparks", 
            "givenName": "James", 
            "id": "sg:person.013626732335.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013626732335.12"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Department of Mathematics, Harvard University, One Oxford Street, 02138, Cambridge, MA, U.S.A"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yau", 
            "givenName": "Shing-Tung", 
            "id": "sg:person.01014421431.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014421431.12"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01389077", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004492392", 
              "https://doi.org/10.1007/bf01389077"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0264-9381/22/17/004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004955671"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0264-9381/22/17/004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004955671"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0550-3213(98)00654-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007002030"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.95.071101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007978307"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.95.071101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007978307"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.95.071101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007978307"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0370-2693(98)00809-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011223274"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0550-3213(00)00699-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018210546"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01217685", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019072662", 
              "https://doi.org/10.1007/bf01217685"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01217685", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019072662", 
              "https://doi.org/10.1007/bf01217685"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2005/02/009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020718058", 
              "https://doi.org/10.1088/1126-6708/2005/02/009"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physletb.2005.06.059", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021186605"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0550-3213(03)00459-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030718669"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0550-3213(03)00459-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030718669"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2002/12/076", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031433556", 
              "https://doi.org/10.1088/1126-6708/2002/12/076"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0002-9939-99-04930-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033865237"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-005-1425-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035452330", 
              "https://doi.org/10.1007/s00220-005-1425-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-005-1425-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035452330", 
              "https://doi.org/10.1007/s00220-005-1425-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2005/06/064", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035683796", 
              "https://doi.org/10.1088/1126-6708/2005/06/064"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2005/06/064", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035683796", 
              "https://doi.org/10.1088/1126-6708/2005/06/064"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01231543", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036977612", 
              "https://doi.org/10.1007/bf01231543"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0393-0440(99)00078-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037353586"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0264-9381/21/18/005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043851116"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0027763000002026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048345135"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-74311-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048660547", 
              "https://doi.org/10.1007/978-3-540-74311-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-74311-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048660547", 
              "https://doi.org/10.1007/978-3-540-74311-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2004/12/024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048822307", 
              "https://doi.org/10.1088/1126-6708/2004/12/024"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0002-9947-97-01821-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048852524"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0129167x98000282", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062903613"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2140/pjm.1997.181.357", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069070539"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2140/pjm.1997.181.357", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069070539"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4310/atmp.1998.v2.n2.a1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072456893"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4310/atmp.1998.v2.n6.a2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072456926"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4310/atmp.1999.v3.n1.a1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072456932"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4310/atmp.2004.v8.n4.a3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072457124"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4310/atmp.2004.v8.n6.a3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072457133"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4310/jsg.2001.v1.n4.a6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072460678"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.24033/bsmf.2100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083661111"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4310/jdg/1090348129", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084458401"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4310/jdg/1090950195", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084458499"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4310/jdg/1214442874", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084459692"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4310/jdg/1214455538", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084460035"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2006-11", 
        "datePublishedReg": "2006-11-01", 
        "description": "We show that the Reeb vector, and hence in particular the volume, of a Sasaki\u2013Einstein metric on the base of a toric Calabi\u2013Yau cone of complex dimension n may be computed by minimising a function Z on which depends only on the toric data that defines the singularity. In this way one can extract certain geometric information for a toric Sasaki\u2013Einstein manifold without finding the metric explicitly. For complex dimension n = 3 the Reeb vector and the volume correspond to the R\u2013symmetry and the a central charge of the AdS/CFT dual superconformal field theory, respectively. We therefore interpret this extremal problem as the geometric dual of a\u2013maximisation. We illustrate our results with some examples, including the Yp,q singularities and the complex cone over the second del Pezzo surface.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00220-006-0087-0", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136216", 
            "issn": [
              "0010-3616", 
              "1432-0916"
            ], 
            "name": "Communications in Mathematical Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "268"
          }
        ], 
        "name": "The Geometric Dual of a\u2013Maximisation for Toric Sasaki\u2013Einstein Manifolds", 
        "pagination": "39", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "93b2786f0e3b5dc8622f8ba9be7661d8b07552c3b0ee1f1ea06303356862ed66"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00220-006-0087-0"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1031002931"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00220-006-0087-0", 
          "https://app.dimensions.ai/details/publication/pub.1031002931"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T14:30", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13090_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs00220-006-0087-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00220-006-0087-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00220-006-0087-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00220-006-0087-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00220-006-0087-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    190 TRIPLES      21 PREDICATES      61 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00220-006-0087-0 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N5e3b6d16c9e541f08f21bf9d33254e40
    4 schema:citation sg:pub.10.1007/978-3-540-74311-8
    5 sg:pub.10.1007/bf01217685
    6 sg:pub.10.1007/bf01231543
    7 sg:pub.10.1007/bf01389077
    8 sg:pub.10.1007/s00220-005-1425-3
    9 sg:pub.10.1088/1126-6708/2002/12/076
    10 sg:pub.10.1088/1126-6708/2004/12/024
    11 sg:pub.10.1088/1126-6708/2005/02/009
    12 sg:pub.10.1088/1126-6708/2005/06/064
    13 https://doi.org/10.1016/j.physletb.2005.06.059
    14 https://doi.org/10.1016/s0370-2693(98)00809-0
    15 https://doi.org/10.1016/s0393-0440(99)00078-9
    16 https://doi.org/10.1016/s0550-3213(00)00699-4
    17 https://doi.org/10.1016/s0550-3213(03)00459-0
    18 https://doi.org/10.1016/s0550-3213(98)00654-3
    19 https://doi.org/10.1017/s0027763000002026
    20 https://doi.org/10.1088/0264-9381/21/18/005
    21 https://doi.org/10.1088/0264-9381/22/17/004
    22 https://doi.org/10.1090/s0002-9939-99-04930-8
    23 https://doi.org/10.1090/s0002-9947-97-01821-7
    24 https://doi.org/10.1103/physrevlett.95.071101
    25 https://doi.org/10.1142/s0129167x98000282
    26 https://doi.org/10.2140/pjm.1997.181.357
    27 https://doi.org/10.24033/bsmf.2100
    28 https://doi.org/10.4310/atmp.1998.v2.n2.a1
    29 https://doi.org/10.4310/atmp.1998.v2.n6.a2
    30 https://doi.org/10.4310/atmp.1999.v3.n1.a1
    31 https://doi.org/10.4310/atmp.2004.v8.n4.a3
    32 https://doi.org/10.4310/atmp.2004.v8.n6.a3
    33 https://doi.org/10.4310/jdg/1090348129
    34 https://doi.org/10.4310/jdg/1090950195
    35 https://doi.org/10.4310/jdg/1214442874
    36 https://doi.org/10.4310/jdg/1214455538
    37 https://doi.org/10.4310/jsg.2001.v1.n4.a6
    38 schema:datePublished 2006-11
    39 schema:datePublishedReg 2006-11-01
    40 schema:description We show that the Reeb vector, and hence in particular the volume, of a Sasaki–Einstein metric on the base of a toric Calabi–Yau cone of complex dimension n may be computed by minimising a function Z on which depends only on the toric data that defines the singularity. In this way one can extract certain geometric information for a toric Sasaki–Einstein manifold without finding the metric explicitly. For complex dimension n = 3 the Reeb vector and the volume correspond to the R–symmetry and the a central charge of the AdS/CFT dual superconformal field theory, respectively. We therefore interpret this extremal problem as the geometric dual of a–maximisation. We illustrate our results with some examples, including the Yp,q singularities and the complex cone over the second del Pezzo surface.
    41 schema:genre research_article
    42 schema:inLanguage en
    43 schema:isAccessibleForFree true
    44 schema:isPartOf N56460f17c71d4156935ca786136e1123
    45 Nec4cc58ce9964e46b44acde5c5805558
    46 sg:journal.1136216
    47 schema:name The Geometric Dual of a–Maximisation for Toric Sasaki–Einstein Manifolds
    48 schema:pagination 39
    49 schema:productId N01671bec5c3848f1a1301eb718aafeef
    50 N3ded0a6cb0fb49eb9dec83af2336fad0
    51 N967a1a4b3890448db2983b97f01bfd67
    52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031002931
    53 https://doi.org/10.1007/s00220-006-0087-0
    54 schema:sdDatePublished 2019-04-11T14:30
    55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    56 schema:sdPublisher Nd2b49dbc36f64d87aad34e5fdb28c2a4
    57 schema:url http://link.springer.com/10.1007%2Fs00220-006-0087-0
    58 sgo:license sg:explorer/license/
    59 sgo:sdDataset articles
    60 rdf:type schema:ScholarlyArticle
    61 N01671bec5c3848f1a1301eb718aafeef schema:name doi
    62 schema:value 10.1007/s00220-006-0087-0
    63 rdf:type schema:PropertyValue
    64 N164000b7f7b341cf9e516ec7dfbe2216 rdf:first sg:person.013626732335.12
    65 rdf:rest N38956ff4b40a45e399ce8d93d0c6eba3
    66 N38956ff4b40a45e399ce8d93d0c6eba3 rdf:first sg:person.01014421431.12
    67 rdf:rest rdf:nil
    68 N3ded0a6cb0fb49eb9dec83af2336fad0 schema:name readcube_id
    69 schema:value 93b2786f0e3b5dc8622f8ba9be7661d8b07552c3b0ee1f1ea06303356862ed66
    70 rdf:type schema:PropertyValue
    71 N56460f17c71d4156935ca786136e1123 schema:volumeNumber 268
    72 rdf:type schema:PublicationVolume
    73 N5e3b6d16c9e541f08f21bf9d33254e40 rdf:first sg:person.010105233122.34
    74 rdf:rest N164000b7f7b341cf9e516ec7dfbe2216
    75 N967a1a4b3890448db2983b97f01bfd67 schema:name dimensions_id
    76 schema:value pub.1031002931
    77 rdf:type schema:PropertyValue
    78 Nd2b49dbc36f64d87aad34e5fdb28c2a4 schema:name Springer Nature - SN SciGraph project
    79 rdf:type schema:Organization
    80 Nec4cc58ce9964e46b44acde5c5805558 schema:issueNumber 1
    81 rdf:type schema:PublicationIssue
    82 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    83 schema:name Mathematical Sciences
    84 rdf:type schema:DefinedTerm
    85 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    86 schema:name Pure Mathematics
    87 rdf:type schema:DefinedTerm
    88 sg:journal.1136216 schema:issn 0010-3616
    89 1432-0916
    90 schema:name Communications in Mathematical Physics
    91 rdf:type schema:Periodical
    92 sg:person.010105233122.34 schema:affiliation https://www.grid.ac/institutes/grid.9132.9
    93 schema:familyName Martelli
    94 schema:givenName Dario
    95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010105233122.34
    96 rdf:type schema:Person
    97 sg:person.01014421431.12 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    98 schema:familyName Yau
    99 schema:givenName Shing-Tung
    100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014421431.12
    101 rdf:type schema:Person
    102 sg:person.013626732335.12 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    103 schema:familyName Sparks
    104 schema:givenName James
    105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013626732335.12
    106 rdf:type schema:Person
    107 sg:pub.10.1007/978-3-540-74311-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048660547
    108 https://doi.org/10.1007/978-3-540-74311-8
    109 rdf:type schema:CreativeWork
    110 sg:pub.10.1007/bf01217685 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019072662
    111 https://doi.org/10.1007/bf01217685
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1007/bf01231543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036977612
    114 https://doi.org/10.1007/bf01231543
    115 rdf:type schema:CreativeWork
    116 sg:pub.10.1007/bf01389077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004492392
    117 https://doi.org/10.1007/bf01389077
    118 rdf:type schema:CreativeWork
    119 sg:pub.10.1007/s00220-005-1425-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035452330
    120 https://doi.org/10.1007/s00220-005-1425-3
    121 rdf:type schema:CreativeWork
    122 sg:pub.10.1088/1126-6708/2002/12/076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031433556
    123 https://doi.org/10.1088/1126-6708/2002/12/076
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1088/1126-6708/2004/12/024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048822307
    126 https://doi.org/10.1088/1126-6708/2004/12/024
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1088/1126-6708/2005/02/009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020718058
    129 https://doi.org/10.1088/1126-6708/2005/02/009
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1088/1126-6708/2005/06/064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035683796
    132 https://doi.org/10.1088/1126-6708/2005/06/064
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1016/j.physletb.2005.06.059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021186605
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1016/s0370-2693(98)00809-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011223274
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1016/s0393-0440(99)00078-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037353586
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1016/s0550-3213(00)00699-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018210546
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1016/s0550-3213(03)00459-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030718669
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1016/s0550-3213(98)00654-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007002030
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1017/s0027763000002026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048345135
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1088/0264-9381/21/18/005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043851116
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1088/0264-9381/22/17/004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004955671
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1090/s0002-9939-99-04930-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033865237
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1090/s0002-9947-97-01821-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048852524
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1103/physrevlett.95.071101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007978307
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1142/s0129167x98000282 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062903613
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.2140/pjm.1997.181.357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069070539
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.24033/bsmf.2100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083661111
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.4310/atmp.1998.v2.n2.a1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072456893
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.4310/atmp.1998.v2.n6.a2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072456926
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.4310/atmp.1999.v3.n1.a1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072456932
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.4310/atmp.2004.v8.n4.a3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072457124
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.4310/atmp.2004.v8.n6.a3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072457133
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.4310/jdg/1090348129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084458401
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.4310/jdg/1090950195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084458499
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.4310/jdg/1214442874 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084459692
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.4310/jdg/1214455538 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084460035
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.4310/jsg.2001.v1.n4.a6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072460678
    183 rdf:type schema:CreativeWork
    184 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
    185 schema:name Department of Mathematics, Harvard University, One Oxford Street, 02138, Cambridge, MA, U.S.A
    186 Jefferson Physical Laboratory, Harvard University, 02138, Cambridge, MA, U.S.A
    187 rdf:type schema:Organization
    188 https://www.grid.ac/institutes/grid.9132.9 schema:alternateName European Organization for Nuclear Research
    189 schema:name Department of Physics, CERN Theory Division, 1211, Geneva 23, Switzerland
    190 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...