The Fermi Golden Rule and its Form at Thresholds in Odd Dimensions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2005-09-20

AUTHORS

Arne Jensen, Gheorghe Nenciu

ABSTRACT

Let H be a Schrödinger operator on a Hilbert space , such that zero is a nondegenerate threshold eigenvalue of H with eigenfunction Ψ0. Let W be a bounded selfadjoint operator satisfying 〈 Ψ0, WΨ0〈>0. Assume that the resolvent (H−z)−1 has an asymptotic expansion around z=0 of the form typical for Schrödinger operators on odd-dimensional spaces. Let H(ɛ) =H+ɛW for ɛ>0 and small. We show under some additional assumptions that the eigenvalue at zero becomes a resonance for H(ɛ), in the time-dependent sense introduced by A. Orth. No analytic continuation is needed. We show that the imaginary part of the resonance has a dependence on ɛ of the form ɛ2+(ν/2) with the integer ν≥−1 and odd. This shows how the Fermi Golden Rule has to be modified in the case of perturbation of a threshold eigenvalue. We give a number of explicit examples, where we compute the ``location'' of the resonance to leading order in ɛ. We also give results, in the case where the eigenvalue is embedded in the continuum, sharpening the existing ones. More... »

PAGES

693-727

References to SciGraph publications

  • 1986-12. Truncated Gamow functions, α-decay and the exponential law in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1994-10. Resonances for perturbations of a semiclassical periodic Schrödinger operator in ARKIV FÖR MATEMATIK
  • 2004-07. Variational Principles for Eigenvalues of Self-adjoint Operator Functions in INTEGRAL EQUATIONS AND OPERATOR THEORY
  • 1990-01. Quantum mechanical resonance and limiting absorption: The many body problem in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2001-11. Resonance Theory for Schrödinger Operators in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1999-04. A Time-Dependent Theory of Quantum Resonances in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1991-11. Exponential decay near resonance, without analyticity in LETTERS IN MATHEMATICAL PHYSICS
  • 2006-01-01. Mathematical Theory of the Wigner-Weisskopf Atom in LARGE COULOMB SYSTEMS
  • 1989-09. Perturbation of embedded eigenvalues in the generalizedN-body problem in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1998-12. Time Dependent Resonance Theory in GEOMETRIC AND FUNCTIONAL ANALYSIS
  • 1990-08. Resonances, metastable states and exponential decay laws in perturbation theory in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1982. Scattering Theory of Waves and Particles in NONE
  • 1995-09. The time evolution of a class of meta-stable states in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1994-10. Resonant decay of a two state atom interacting with a massless non-relativistic quantised scalar field in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00220-005-1428-0

    DOI

    http://dx.doi.org/10.1007/s00220-005-1428-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1019860762


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "MaPhySto \u2013 A Network in Mathematical Physics and Stochastics", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Department of Mathematical Sciences, Aalborg University, Fredrik Bajers Vej 7G, 9220, Aalborg \u00d8, Denmark", 
                "MaPhySto \u2013 A Network in Mathematical Physics and Stochastics"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jensen", 
            "givenName": "Arne", 
            "id": "sg:person.015240561701.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015240561701.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Mathematics ``Simion Stoilow'' of the Romanian Academy, P. O. Box 1-764, 014700, Bucharest, Romania", 
              "id": "http://www.grid.ac/institutes/grid.418333.e", 
              "name": [
                "Department of Theoretical Physics, University of Bucharest, P. O. Box MG11, 76900, Bucharest, Romania", 
                "Institute of Mathematics ``Simion Stoilow'' of the Romanian Academy, P. O. Box 1-764, 014700, Bucharest, Romania"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nenciu", 
            "givenName": "Gheorghe", 
            "id": "sg:person.015403713705.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015403713705.47"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01885499", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013642077", 
              "https://doi.org/10.1007/bf01885499"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01211067", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000885197", 
              "https://doi.org/10.1007/bf01211067"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02101807", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023348435", 
              "https://doi.org/10.1007/bf02101807"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00020-002-1209-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012093842", 
              "https://doi.org/10.1007/s00020-002-1209-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02125700", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029849640", 
              "https://doi.org/10.1007/bf02125700"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02099424", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022089678", 
              "https://doi.org/10.1007/bf02099424"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02278006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011687585", 
              "https://doi.org/10.1007/bf02278006"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-32579-4_4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017851238", 
              "https://doi.org/10.1007/3-540-32579-4_4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002200100558", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005199088", 
              "https://doi.org/10.1007/s002200100558"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01238435", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035765578", 
              "https://doi.org/10.1007/bf01238435"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002200050568", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005305217", 
              "https://doi.org/10.1007/s002200050568"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02559576", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026423047", 
              "https://doi.org/10.1007/bf02559576"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-88128-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047321736", 
              "https://doi.org/10.1007/978-3-642-88128-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s000390050124", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026894586", 
              "https://doi.org/10.1007/s000390050124"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2005-09-20", 
        "datePublishedReg": "2005-09-20", 
        "description": "Let H be a Schr\u00f6dinger operator on a Hilbert space , such that zero is a nondegenerate threshold eigenvalue of H with eigenfunction \u03a80. Let W be a bounded selfadjoint operator satisfying \u3008 \u03a80, W\u03a80\u3008>0. Assume that the resolvent (H\u2212z)\u22121 has an asymptotic expansion around z=0 of the form typical for Schr\u00f6dinger operators on odd-dimensional spaces. Let H(\u025b) =H+\u025bW for \u025b>0 and small. We show under some additional assumptions that the eigenvalue at zero becomes a resonance for H(\u025b), in the time-dependent sense introduced by A. Orth. No analytic continuation is needed. We show that the imaginary part of the resonance has a dependence on \u025b of the form \u025b2+(\u03bd/2) with the integer \u03bd\u2265\u22121 and odd. This shows how the Fermi Golden Rule has to be modified in the case of perturbation of a threshold eigenvalue. We give a number of explicit examples, where we compute the ``location'' of the resonance to leading order in \u025b. We also give results, in the case where the eigenvalue is embedded in the continuum, sharpening the existing ones.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00220-005-1428-0", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136216", 
            "issn": [
              "0010-3616", 
              "1432-0916"
            ], 
            "name": "Communications in Mathematical Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "261"
          }
        ], 
        "keywords": [
          "operators", 
          "case of perturbations", 
          "rules", 
          "space", 
          "example", 
          "integers", 
          "order", 
          "Hilbert space", 
          "location", 
          "one", 
          "eigenvalues", 
          "number", 
          "assumption", 
          "sense", 
          "form", 
          "additional assumptions", 
          "part", 
          "results", 
          "threshold", 
          "dimensions", 
          "golden rule", 
          "cases", 
          "explicit examples", 
          "imaginary part", 
          "expansion", 
          "continuation", 
          "perturbations", 
          "resolvent", 
          "Orth", 
          "continuum", 
          "odd dimensions", 
          "Schr\u00f6dinger operators", 
          "odd-dimensional spaces", 
          "analytic continuation", 
          "dependence", 
          "threshold eigenvalue", 
          "selfadjoint operators", 
          "asymptotic expansion", 
          "resonance", 
          "Fermi's golden rule", 
          "\u03c80", 
          "nondegenerate threshold eigenvalue", 
          "eigenfunction \u03a80", 
          "time-dependent sense"
        ], 
        "name": "The Fermi Golden Rule and its Form at Thresholds in Odd Dimensions", 
        "pagination": "693-727", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1019860762"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00220-005-1428-0"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00220-005-1428-0", 
          "https://app.dimensions.ai/details/publication/pub.1019860762"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:14", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_404.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00220-005-1428-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00220-005-1428-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00220-005-1428-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00220-005-1428-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00220-005-1428-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    170 TRIPLES      22 PREDICATES      83 URIs      61 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00220-005-1428-0 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N3b337676117b42f49c0f3108268e3746
    4 schema:citation sg:pub.10.1007/3-540-32579-4_4
    5 sg:pub.10.1007/978-3-642-88128-2
    6 sg:pub.10.1007/bf01211067
    7 sg:pub.10.1007/bf01238435
    8 sg:pub.10.1007/bf01885499
    9 sg:pub.10.1007/bf02099424
    10 sg:pub.10.1007/bf02101807
    11 sg:pub.10.1007/bf02125700
    12 sg:pub.10.1007/bf02278006
    13 sg:pub.10.1007/bf02559576
    14 sg:pub.10.1007/s00020-002-1209-5
    15 sg:pub.10.1007/s000390050124
    16 sg:pub.10.1007/s002200050568
    17 sg:pub.10.1007/s002200100558
    18 schema:datePublished 2005-09-20
    19 schema:datePublishedReg 2005-09-20
    20 schema:description Let H be a Schrödinger operator on a Hilbert space , such that zero is a nondegenerate threshold eigenvalue of H with eigenfunction Ψ0. Let W be a bounded selfadjoint operator satisfying 〈 Ψ0, WΨ0〈>0. Assume that the resolvent (H−z)−1 has an asymptotic expansion around z=0 of the form typical for Schrödinger operators on odd-dimensional spaces. Let H(ɛ) =H+ɛW for ɛ>0 and small. We show under some additional assumptions that the eigenvalue at zero becomes a resonance for H(ɛ), in the time-dependent sense introduced by A. Orth. No analytic continuation is needed. We show that the imaginary part of the resonance has a dependence on ɛ of the form ɛ2+(ν/2) with the integer ν≥−1 and odd. This shows how the Fermi Golden Rule has to be modified in the case of perturbation of a threshold eigenvalue. We give a number of explicit examples, where we compute the ``location'' of the resonance to leading order in ɛ. We also give results, in the case where the eigenvalue is embedded in the continuum, sharpening the existing ones.
    21 schema:genre article
    22 schema:inLanguage en
    23 schema:isAccessibleForFree false
    24 schema:isPartOf N9a631cd778e74d248350ee05dc8b1dcf
    25 Nd2b59fb69ad54651897451a0d5c4d385
    26 sg:journal.1136216
    27 schema:keywords Fermi's golden rule
    28 Hilbert space
    29 Orth
    30 Schrödinger operators
    31 additional assumptions
    32 analytic continuation
    33 assumption
    34 asymptotic expansion
    35 case of perturbations
    36 cases
    37 continuation
    38 continuum
    39 dependence
    40 dimensions
    41 eigenfunction Ψ0
    42 eigenvalues
    43 example
    44 expansion
    45 explicit examples
    46 form
    47 golden rule
    48 imaginary part
    49 integers
    50 location
    51 nondegenerate threshold eigenvalue
    52 number
    53 odd dimensions
    54 odd-dimensional spaces
    55 one
    56 operators
    57 order
    58 part
    59 perturbations
    60 resolvent
    61 resonance
    62 results
    63 rules
    64 selfadjoint operators
    65 sense
    66 space
    67 threshold
    68 threshold eigenvalue
    69 time-dependent sense
    70 ψ0
    71 schema:name The Fermi Golden Rule and its Form at Thresholds in Odd Dimensions
    72 schema:pagination 693-727
    73 schema:productId N03ea70f63568418587cc38c36071cf23
    74 N275577fd64ca45da93364c11ff5c9150
    75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019860762
    76 https://doi.org/10.1007/s00220-005-1428-0
    77 schema:sdDatePublished 2022-01-01T18:14
    78 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    79 schema:sdPublisher N071dde7c642d42a4b28a750773323192
    80 schema:url https://doi.org/10.1007/s00220-005-1428-0
    81 sgo:license sg:explorer/license/
    82 sgo:sdDataset articles
    83 rdf:type schema:ScholarlyArticle
    84 N03ea70f63568418587cc38c36071cf23 schema:name dimensions_id
    85 schema:value pub.1019860762
    86 rdf:type schema:PropertyValue
    87 N071dde7c642d42a4b28a750773323192 schema:name Springer Nature - SN SciGraph project
    88 rdf:type schema:Organization
    89 N275577fd64ca45da93364c11ff5c9150 schema:name doi
    90 schema:value 10.1007/s00220-005-1428-0
    91 rdf:type schema:PropertyValue
    92 N3b337676117b42f49c0f3108268e3746 rdf:first sg:person.015240561701.11
    93 rdf:rest N92b0a62485c04a28ace122f835120b7e
    94 N92b0a62485c04a28ace122f835120b7e rdf:first sg:person.015403713705.47
    95 rdf:rest rdf:nil
    96 N9a631cd778e74d248350ee05dc8b1dcf schema:volumeNumber 261
    97 rdf:type schema:PublicationVolume
    98 Nd2b59fb69ad54651897451a0d5c4d385 schema:issueNumber 3
    99 rdf:type schema:PublicationIssue
    100 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    101 schema:name Mathematical Sciences
    102 rdf:type schema:DefinedTerm
    103 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    104 schema:name Pure Mathematics
    105 rdf:type schema:DefinedTerm
    106 sg:journal.1136216 schema:issn 0010-3616
    107 1432-0916
    108 schema:name Communications in Mathematical Physics
    109 schema:publisher Springer Nature
    110 rdf:type schema:Periodical
    111 sg:person.015240561701.11 schema:affiliation grid-institutes:None
    112 schema:familyName Jensen
    113 schema:givenName Arne
    114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015240561701.11
    115 rdf:type schema:Person
    116 sg:person.015403713705.47 schema:affiliation grid-institutes:grid.418333.e
    117 schema:familyName Nenciu
    118 schema:givenName Gheorghe
    119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015403713705.47
    120 rdf:type schema:Person
    121 sg:pub.10.1007/3-540-32579-4_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017851238
    122 https://doi.org/10.1007/3-540-32579-4_4
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1007/978-3-642-88128-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047321736
    125 https://doi.org/10.1007/978-3-642-88128-2
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1007/bf01211067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000885197
    128 https://doi.org/10.1007/bf01211067
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.1007/bf01238435 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035765578
    131 https://doi.org/10.1007/bf01238435
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1007/bf01885499 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013642077
    134 https://doi.org/10.1007/bf01885499
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1007/bf02099424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022089678
    137 https://doi.org/10.1007/bf02099424
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1007/bf02101807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023348435
    140 https://doi.org/10.1007/bf02101807
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1007/bf02125700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029849640
    143 https://doi.org/10.1007/bf02125700
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1007/bf02278006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011687585
    146 https://doi.org/10.1007/bf02278006
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1007/bf02559576 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026423047
    149 https://doi.org/10.1007/bf02559576
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1007/s00020-002-1209-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012093842
    152 https://doi.org/10.1007/s00020-002-1209-5
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1007/s000390050124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026894586
    155 https://doi.org/10.1007/s000390050124
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1007/s002200050568 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005305217
    158 https://doi.org/10.1007/s002200050568
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1007/s002200100558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005199088
    161 https://doi.org/10.1007/s002200100558
    162 rdf:type schema:CreativeWork
    163 grid-institutes:None schema:alternateName MaPhySto – A Network in Mathematical Physics and Stochastics
    164 schema:name Department of Mathematical Sciences, Aalborg University, Fredrik Bajers Vej 7G, 9220, Aalborg Ø, Denmark
    165 MaPhySto – A Network in Mathematical Physics and Stochastics
    166 rdf:type schema:Organization
    167 grid-institutes:grid.418333.e schema:alternateName Institute of Mathematics ``Simion Stoilow'' of the Romanian Academy, P. O. Box 1-764, 014700, Bucharest, Romania
    168 schema:name Department of Theoretical Physics, University of Bucharest, P. O. Box MG11, 76900, Bucharest, Romania
    169 Institute of Mathematics ``Simion Stoilow'' of the Romanian Academy, P. O. Box 1-764, 014700, Bucharest, Romania
    170 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...