Toric Geometry, Sasaki–Einstein Manifolds and a New Infinite Class of AdS/CFT Duals View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2006-02

AUTHORS

Dario Martelli, James Sparks

ABSTRACT

Recently an infinite family of explicit Sasaki–Einstein metrics Yp,q on S2×S3 has been discovered, where p and q are two coprime positive integers, with qthese are Kähler quotients namely the vacua of gauged linear sigma models with charges (p,p,−p+q,−p−q), thereby generalising the conifold, which is p=1,q=0. We present the corresponding toric diagrams and show that these may be embedded in the toric diagram for the orbifold for all q

More... »

PAGES

51

References to SciGraph publications

  • 2004-04-30. Exceptional collections and del Pezzo gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 1987-06. On Kähler-Einstein metrics on certain Kähler manifolds withC1 (M)>0 in INVENTIONES MATHEMATICAE
  • 2003-03. On the geometry of Sasakian-Einstein 5-manifolds in MATHEMATISCHE ANNALEN
  • 2004-12-10. New checks and subtleties for AdS/CFT and a-maximization in JOURNAL OF HIGH ENERGY PHYSICS
  • 1982-10. Convexity properties of the moment mapping in INVENTIONES MATHEMATICAE
  • 2000-03-10. M-theory on the Stiefel manifold and 3d conformal field theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2004-03. Baryon Charges in 4d Superconformal Field Theories and Their AdS Duals in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2003-09-26. Dibaryons from exceptional collections in JOURNAL OF HIGH ENERGY PHYSICS
  • 2002-06-23. Baryon Spectra and AdS/CFT Correspondence in JOURNAL OF HIGH ENERGY PHYSICS
  • 1994-12. On the cone structure at infinity of Ricci flat manifolds with Euclidean volume growth and quadratic curvature decay in INVENTIONES MATHEMATICAE
  • 2002-12-27. Symmetries of Toric Duality in JOURNAL OF HIGH ENERGY PHYSICS
  • 1987-03. Kähler-Einstein metrics on complex surfaces withC1>0 in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00220-005-1425-3

    DOI

    http://dx.doi.org/10.1007/s00220-005-1425-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1035452330


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "European Organization for Nuclear Research", 
              "id": "https://www.grid.ac/institutes/grid.9132.9", 
              "name": [
                "Department of Physics, CERN Theory Division, 1211, Geneva 23, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Martelli", 
            "givenName": "Dario", 
            "id": "sg:person.010105233122.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010105233122.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Department of Mathematics and Jefferson Physical Laboratory, Harvard University, 02318, Cambridge, MA, U.S.A"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sparks", 
            "givenName": "James", 
            "id": "sg:person.013626732335.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013626732335.12"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1090/s0002-9947-04-03557-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000062213"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2002/06/047", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002967548", 
              "https://doi.org/10.1088/1126-6708/2002/06/047"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00208-002-0388-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003032512", 
              "https://doi.org/10.1007/s00208-002-0388-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01389077", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004492392", 
              "https://doi.org/10.1007/bf01389077"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(93)90033-l", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004765127"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(93)90033-l", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004765127"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0264-9381/22/17/004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004955671"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0264-9381/22/17/004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004955671"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-003-1023-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006697906", 
              "https://doi.org/10.1007/s00220-003-1023-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0550-3213(98)00654-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007002030"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01398933", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009985495", 
              "https://doi.org/10.1007/bf01398933"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01398933", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009985495", 
              "https://doi.org/10.1007/bf01398933"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0370-2693(98)00809-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011223274"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0002-9947-02-03015-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012029944"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0550-3213(00)00699-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018210546"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01217685", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019072662", 
              "https://doi.org/10.1007/bf01217685"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01217685", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019072662", 
              "https://doi.org/10.1007/bf01217685"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2003/09/060", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024271391", 
              "https://doi.org/10.1088/1126-6708/2003/09/060"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2000/03/011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027391341", 
              "https://doi.org/10.1088/1126-6708/2000/03/011"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0550-3213(03)00459-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030718669"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0550-3213(03)00459-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030718669"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2002/12/076", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031433556", 
              "https://doi.org/10.1088/1126-6708/2002/12/076"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0370-2693(99)00642-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032692829"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0550-3213(99)00646-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033701969"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(90)90577-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033730191"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(90)90577-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033730191"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(78)90231-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034197758"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(78)90231-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034197758"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01231543", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036977612", 
              "https://doi.org/10.1007/bf01231543"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0393-0440(99)00078-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037353586"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2004/04/069", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041144707", 
              "https://doi.org/10.1088/1126-6708/2004/04/069"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0264-9381/21/18/005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043851116"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0027763000002026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048345135"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0926-2245(03)00033-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048364689"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0926-2245(03)00033-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048364689"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2004/12/024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048822307", 
              "https://doi.org/10.1088/1126-6708/2004/12/024"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0002-9947-97-01821-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048852524"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0550-3213(00)00098-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049385443"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.59.025006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050819967"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.59.025006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050819967"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1112/blms/14.1.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053256068"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2140/pjm.1997.181.357", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069070539"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2140/pjm.1997.181.357", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069070539"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/1970417", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069675744"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4310/atmp.1998.v2.n2.a1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072456893"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4310/atmp.1998.v2.n6.a2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072456926"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4310/atmp.1999.v3.n1.a1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072456932"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4310/atmp.2004.v8.n4.a3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072457124"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4310/jsg.2001.v1.n4.a6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072460678"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.24033/bsmf.2100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083661111"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4310/jdg/1090348129", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084458401"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4310/jdg/1214442874", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084459692"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4310/jdg/1214444095", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084459749"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2006-02", 
        "datePublishedReg": "2006-02-01", 
        "description": "Recently an infinite family of explicit Sasaki\u2013Einstein metrics Yp,q on S2\u00d7S3 has been discovered, where p and q are two coprime positive integers, with q
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00220-005-1425-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00220-005-1425-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00220-005-1425-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00220-005-1425-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    212 TRIPLES      21 PREDICATES      70 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00220-005-1425-3 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N1cee698fdb33408eb4fdc40bfc4c9641
    4 schema:citation sg:pub.10.1007/bf01217685
    5 sg:pub.10.1007/bf01231543
    6 sg:pub.10.1007/bf01389077
    7 sg:pub.10.1007/bf01398933
    8 sg:pub.10.1007/s00208-002-0388-3
    9 sg:pub.10.1007/s00220-003-1023-1
    10 sg:pub.10.1088/1126-6708/2000/03/011
    11 sg:pub.10.1088/1126-6708/2002/06/047
    12 sg:pub.10.1088/1126-6708/2002/12/076
    13 sg:pub.10.1088/1126-6708/2003/09/060
    14 sg:pub.10.1088/1126-6708/2004/04/069
    15 sg:pub.10.1088/1126-6708/2004/12/024
    16 https://doi.org/10.1016/0370-2693(78)90231-9
    17 https://doi.org/10.1016/0550-3213(90)90577-z
    18 https://doi.org/10.1016/0550-3213(93)90033-l
    19 https://doi.org/10.1016/s0370-2693(98)00809-0
    20 https://doi.org/10.1016/s0370-2693(99)00642-5
    21 https://doi.org/10.1016/s0393-0440(99)00078-9
    22 https://doi.org/10.1016/s0550-3213(00)00098-5
    23 https://doi.org/10.1016/s0550-3213(00)00699-4
    24 https://doi.org/10.1016/s0550-3213(03)00459-0
    25 https://doi.org/10.1016/s0550-3213(98)00654-3
    26 https://doi.org/10.1016/s0550-3213(99)00646-x
    27 https://doi.org/10.1016/s0926-2245(03)00033-0
    28 https://doi.org/10.1017/s0027763000002026
    29 https://doi.org/10.1088/0264-9381/21/18/005
    30 https://doi.org/10.1088/0264-9381/22/17/004
    31 https://doi.org/10.1090/s0002-9947-02-03015-5
    32 https://doi.org/10.1090/s0002-9947-04-03557-3
    33 https://doi.org/10.1090/s0002-9947-97-01821-7
    34 https://doi.org/10.1103/physrevd.59.025006
    35 https://doi.org/10.1112/blms/14.1.1
    36 https://doi.org/10.2140/pjm.1997.181.357
    37 https://doi.org/10.2307/1970417
    38 https://doi.org/10.24033/bsmf.2100
    39 https://doi.org/10.4310/atmp.1998.v2.n2.a1
    40 https://doi.org/10.4310/atmp.1998.v2.n6.a2
    41 https://doi.org/10.4310/atmp.1999.v3.n1.a1
    42 https://doi.org/10.4310/atmp.2004.v8.n4.a3
    43 https://doi.org/10.4310/jdg/1090348129
    44 https://doi.org/10.4310/jdg/1214442874
    45 https://doi.org/10.4310/jdg/1214444095
    46 https://doi.org/10.4310/jsg.2001.v1.n4.a6
    47 schema:datePublished 2006-02
    48 schema:datePublishedReg 2006-02-01
    49 schema:description Recently an infinite family of explicit Sasaki–Einstein metrics Yp,q on S2×S3 has been discovered, where p and q are two coprime positive integers, with q<p. These give rise to a corresponding family of Calabi–Yau cones, which moreover are toric. Aided by several recent results in toric geometry, we show that these are Kähler quotients namely the vacua of gauged linear sigma models with charges (p,p,−p+q,−p−q), thereby generalising the conifold, which is p=1,q=0. We present the corresponding toric diagrams and show that these may be embedded in the toric diagram for the orbifold for all q<p with fixed p. We hence find that the Yp,q manifolds are AdS/CFT dual to an infinite class of superconformal field theories arising as IR fixed points of toric quiver gauge theories with gauge group SU(N)2p. As a non–trivial example, we show that Y2,1 is an explicit irregular Sasaki–Einstein metric on the horizon of the complex cone over the first del Pezzo surface. The dual quiver gauge theory has already been constructed for this case and hence we can predict the exact central charge of this theory at its IR fixed point using the AdS/CFT correspondence. The value we obtain is a quadratic irrational number and, remarkably, agrees with a recent purely field theoretic calculation using a-maximisation.
    50 schema:genre research_article
    51 schema:inLanguage en
    52 schema:isAccessibleForFree true
    53 schema:isPartOf N6d84796fb8c84f4cba69ce22f42ea297
    54 Nfc67f976c5bb4243a9d553cc86eae9a3
    55 sg:journal.1136216
    56 schema:name Toric Geometry, Sasaki–Einstein Manifolds and a New Infinite Class of AdS/CFT Duals
    57 schema:pagination 51
    58 schema:productId N07883be07b1f4667ab255e7b0d642adf
    59 N75d4920941174d58b6234fed95fbc8b4
    60 Nb42496a1d9a64df4a2b61fcc05539eda
    61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035452330
    62 https://doi.org/10.1007/s00220-005-1425-3
    63 schema:sdDatePublished 2019-04-11T14:32
    64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    65 schema:sdPublisher Nf10a13b901174530b507494fe4ef6ab6
    66 schema:url http://link.springer.com/10.1007%2Fs00220-005-1425-3
    67 sgo:license sg:explorer/license/
    68 sgo:sdDataset articles
    69 rdf:type schema:ScholarlyArticle
    70 N07883be07b1f4667ab255e7b0d642adf schema:name readcube_id
    71 schema:value a8e133efafb833bddecf1dd75dcbf16486aceca5f1a0df6e6535f8c6021cfa32
    72 rdf:type schema:PropertyValue
    73 N1cee698fdb33408eb4fdc40bfc4c9641 rdf:first sg:person.010105233122.34
    74 rdf:rest Ne6b4ed94b47a45b58ae5e8696de794e4
    75 N6d84796fb8c84f4cba69ce22f42ea297 schema:issueNumber 1
    76 rdf:type schema:PublicationIssue
    77 N75d4920941174d58b6234fed95fbc8b4 schema:name dimensions_id
    78 schema:value pub.1035452330
    79 rdf:type schema:PropertyValue
    80 Nb42496a1d9a64df4a2b61fcc05539eda schema:name doi
    81 schema:value 10.1007/s00220-005-1425-3
    82 rdf:type schema:PropertyValue
    83 Ne6b4ed94b47a45b58ae5e8696de794e4 rdf:first sg:person.013626732335.12
    84 rdf:rest rdf:nil
    85 Nf10a13b901174530b507494fe4ef6ab6 schema:name Springer Nature - SN SciGraph project
    86 rdf:type schema:Organization
    87 Nfc67f976c5bb4243a9d553cc86eae9a3 schema:volumeNumber 262
    88 rdf:type schema:PublicationVolume
    89 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    90 schema:name Mathematical Sciences
    91 rdf:type schema:DefinedTerm
    92 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    93 schema:name Pure Mathematics
    94 rdf:type schema:DefinedTerm
    95 sg:journal.1136216 schema:issn 0010-3616
    96 1432-0916
    97 schema:name Communications in Mathematical Physics
    98 rdf:type schema:Periodical
    99 sg:person.010105233122.34 schema:affiliation https://www.grid.ac/institutes/grid.9132.9
    100 schema:familyName Martelli
    101 schema:givenName Dario
    102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010105233122.34
    103 rdf:type schema:Person
    104 sg:person.013626732335.12 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    105 schema:familyName Sparks
    106 schema:givenName James
    107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013626732335.12
    108 rdf:type schema:Person
    109 sg:pub.10.1007/bf01217685 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019072662
    110 https://doi.org/10.1007/bf01217685
    111 rdf:type schema:CreativeWork
    112 sg:pub.10.1007/bf01231543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036977612
    113 https://doi.org/10.1007/bf01231543
    114 rdf:type schema:CreativeWork
    115 sg:pub.10.1007/bf01389077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004492392
    116 https://doi.org/10.1007/bf01389077
    117 rdf:type schema:CreativeWork
    118 sg:pub.10.1007/bf01398933 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009985495
    119 https://doi.org/10.1007/bf01398933
    120 rdf:type schema:CreativeWork
    121 sg:pub.10.1007/s00208-002-0388-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003032512
    122 https://doi.org/10.1007/s00208-002-0388-3
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1007/s00220-003-1023-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006697906
    125 https://doi.org/10.1007/s00220-003-1023-1
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1088/1126-6708/2000/03/011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027391341
    128 https://doi.org/10.1088/1126-6708/2000/03/011
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.1088/1126-6708/2002/06/047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002967548
    131 https://doi.org/10.1088/1126-6708/2002/06/047
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1088/1126-6708/2002/12/076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031433556
    134 https://doi.org/10.1088/1126-6708/2002/12/076
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1088/1126-6708/2003/09/060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024271391
    137 https://doi.org/10.1088/1126-6708/2003/09/060
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1088/1126-6708/2004/04/069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041144707
    140 https://doi.org/10.1088/1126-6708/2004/04/069
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1088/1126-6708/2004/12/024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048822307
    143 https://doi.org/10.1088/1126-6708/2004/12/024
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1016/0370-2693(78)90231-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034197758
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1016/0550-3213(90)90577-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1033730191
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1016/0550-3213(93)90033-l schema:sameAs https://app.dimensions.ai/details/publication/pub.1004765127
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1016/s0370-2693(98)00809-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011223274
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1016/s0370-2693(99)00642-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032692829
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1016/s0393-0440(99)00078-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037353586
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1016/s0550-3213(00)00098-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049385443
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1016/s0550-3213(00)00699-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018210546
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1016/s0550-3213(03)00459-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030718669
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1016/s0550-3213(98)00654-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007002030
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1016/s0550-3213(99)00646-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1033701969
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1016/s0926-2245(03)00033-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048364689
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1017/s0027763000002026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048345135
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1088/0264-9381/21/18/005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043851116
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1088/0264-9381/22/17/004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004955671
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1090/s0002-9947-02-03015-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012029944
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1090/s0002-9947-04-03557-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000062213
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1090/s0002-9947-97-01821-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048852524
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1103/physrevd.59.025006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050819967
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1112/blms/14.1.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053256068
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.2140/pjm.1997.181.357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069070539
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.2307/1970417 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069675744
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.24033/bsmf.2100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083661111
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.4310/atmp.1998.v2.n2.a1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072456893
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.4310/atmp.1998.v2.n6.a2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072456926
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.4310/atmp.1999.v3.n1.a1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072456932
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.4310/atmp.2004.v8.n4.a3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072457124
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.4310/jdg/1090348129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084458401
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.4310/jdg/1214442874 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084459692
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.4310/jdg/1214444095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084459749
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.4310/jsg.2001.v1.n4.a6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072460678
    206 rdf:type schema:CreativeWork
    207 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
    208 schema:name Department of Mathematics and Jefferson Physical Laboratory, Harvard University, 02318, Cambridge, MA, U.S.A
    209 rdf:type schema:Organization
    210 https://www.grid.ac/institutes/grid.9132.9 schema:alternateName European Organization for Nuclear Research
    211 schema:name Department of Physics, CERN Theory Division, 1211, Geneva 23, Switzerland
    212 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...