Regularity of Solutions to Vorticity Navier–Stokes System on ℝ2 View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2005-09

AUTHORS

Maxim Arnold, Yuri Bakhtin, Efim Dinaburg

ABSTRACT

The Cauchy problem for the Navier–Stokes system for vorticity on plane is considered. If the Fourier transform of the initial data decays as a power at infinity, then at any positive time the Fourier transform of the solution decays exponentially, i.e. the solution is analytic.

PAGES

339-348

References to SciGraph publications

  • 1988-09. Two-dimensional Navier-Stokes flow with measures as initial vorticity in ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS
  • 1994-12. Global solutions of two-dimensional Navier-Stokes and euler equations in ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS
  • 2001-09. Global Existence of Two-Dimensional Navier—Stokes Flow with Nondecaying Initial Velocity in JOURNAL OF MATHEMATICAL FLUID MECHANICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00220-005-1300-2

    DOI

    http://dx.doi.org/10.1007/s00220-005-1300-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1022556002


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute of Earthquake Prediction Theory and Mathematical Geophysics", 
              "id": "https://www.grid.ac/institutes/grid.425208.9", 
              "name": [
                "International Institute of Earthquake Prediction Theory and Mathematical Geophysics, 113556, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Arnold", 
            "givenName": "Maxim", 
            "id": "sg:person.014211271235.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014211271235.32"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Earthquake Prediction Theory and Mathematical Geophysics", 
              "id": "https://www.grid.ac/institutes/grid.425208.9", 
              "name": [
                "International Institute of Earthquake Prediction Theory and Mathematical Geophysics, 113556, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bakhtin", 
            "givenName": "Yuri", 
            "id": "sg:person.01327752120.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327752120.28"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Earthquake Prediction Theory and Mathematical Geophysics", 
              "id": "https://www.grid.ac/institutes/grid.425208.9", 
              "name": [
                "International Institute of Earthquake Prediction Theory and Mathematical Geophysics, 113556, Moscow, Russia", 
                "Warshavskoe sh. 79, kor.2, 113556, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dinaburg", 
            "givenName": "Efim", 
            "id": "sg:person.015076513141.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015076513141.11"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1006/jfan.1999.3550", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002010878"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00387712", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018354786", 
              "https://doi.org/10.1007/bf00387712"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00387712", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018354786", 
              "https://doi.org/10.1007/bf00387712"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/pl00000973", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023446693", 
              "https://doi.org/10.1007/pl00000973"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-1236(89)90015-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024562153"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1874-5792(03)80006-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029384857"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00281355", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044297773", 
              "https://doi.org/10.1007/bf00281355"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00281355", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044297773", 
              "https://doi.org/10.1007/bf00281355"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0219199799000183", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062991768"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4213/rm610", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072370324"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2005-09", 
        "datePublishedReg": "2005-09-01", 
        "description": "The Cauchy problem for the Navier\u2013Stokes system for vorticity on plane is considered. If the Fourier transform of the initial data decays as a power at infinity, then at any positive time the Fourier transform of the solution decays exponentially, i.e. the solution is analytic.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00220-005-1300-2", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136216", 
            "issn": [
              "0010-3616", 
              "1432-0916"
            ], 
            "name": "Communications in Mathematical Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "258"
          }
        ], 
        "name": "Regularity of Solutions to Vorticity Navier\u2013Stokes System on \u211d2", 
        "pagination": "339-348", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "6b766d249de65b52cdee764e15d625f201cd1eab30a6d2f0cfbed2dd373c0b2b"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00220-005-1300-2"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1022556002"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00220-005-1300-2", 
          "https://app.dimensions.ai/details/publication/pub.1022556002"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T14:34", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13109_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs00220-005-1300-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00220-005-1300-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00220-005-1300-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00220-005-1300-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00220-005-1300-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    95 TRIPLES      20 PREDICATES      33 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00220-005-1300-2 schema:author N9a93a45daf984705a6da38d521cd9410
    2 schema:citation sg:pub.10.1007/bf00281355
    3 sg:pub.10.1007/bf00387712
    4 sg:pub.10.1007/pl00000973
    5 https://doi.org/10.1006/jfan.1999.3550
    6 https://doi.org/10.1016/0022-1236(89)90015-3
    7 https://doi.org/10.1016/s1874-5792(03)80006-x
    8 https://doi.org/10.1142/s0219199799000183
    9 https://doi.org/10.4213/rm610
    10 schema:datePublished 2005-09
    11 schema:datePublishedReg 2005-09-01
    12 schema:description The Cauchy problem for the Navier–Stokes system for vorticity on plane is considered. If the Fourier transform of the initial data decays as a power at infinity, then at any positive time the Fourier transform of the solution decays exponentially, i.e. the solution is analytic.
    13 schema:genre research_article
    14 schema:inLanguage en
    15 schema:isAccessibleForFree false
    16 schema:isPartOf N19b90cf099bb45a1a555532bea70ebfd
    17 Nf164eccb96d34158a06a621c9d4d3be8
    18 sg:journal.1136216
    19 schema:name Regularity of Solutions to Vorticity Navier–Stokes System on ℝ2
    20 schema:pagination 339-348
    21 schema:productId N2cdb6de530144099ab9c959343e3c7a1
    22 N41c8f21632b243958c47a2d6acb5ede2
    23 N6d9ad5beffc4432fb571f629a9542fb5
    24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022556002
    25 https://doi.org/10.1007/s00220-005-1300-2
    26 schema:sdDatePublished 2019-04-11T14:34
    27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    28 schema:sdPublisher Nd7951c9fb1784a71984c0421b1b1f7bf
    29 schema:url http://link.springer.com/10.1007%2Fs00220-005-1300-2
    30 sgo:license sg:explorer/license/
    31 sgo:sdDataset articles
    32 rdf:type schema:ScholarlyArticle
    33 N19b90cf099bb45a1a555532bea70ebfd schema:issueNumber 2
    34 rdf:type schema:PublicationIssue
    35 N2cdb6de530144099ab9c959343e3c7a1 schema:name doi
    36 schema:value 10.1007/s00220-005-1300-2
    37 rdf:type schema:PropertyValue
    38 N41c8f21632b243958c47a2d6acb5ede2 schema:name readcube_id
    39 schema:value 6b766d249de65b52cdee764e15d625f201cd1eab30a6d2f0cfbed2dd373c0b2b
    40 rdf:type schema:PropertyValue
    41 N6d9ad5beffc4432fb571f629a9542fb5 schema:name dimensions_id
    42 schema:value pub.1022556002
    43 rdf:type schema:PropertyValue
    44 N7a7427f876544c3887c7539cf78fa85a rdf:first sg:person.015076513141.11
    45 rdf:rest rdf:nil
    46 N87cbd03d5f2646eb92d1b0fca9849f33 rdf:first sg:person.01327752120.28
    47 rdf:rest N7a7427f876544c3887c7539cf78fa85a
    48 N9a93a45daf984705a6da38d521cd9410 rdf:first sg:person.014211271235.32
    49 rdf:rest N87cbd03d5f2646eb92d1b0fca9849f33
    50 Nd7951c9fb1784a71984c0421b1b1f7bf schema:name Springer Nature - SN SciGraph project
    51 rdf:type schema:Organization
    52 Nf164eccb96d34158a06a621c9d4d3be8 schema:volumeNumber 258
    53 rdf:type schema:PublicationVolume
    54 sg:journal.1136216 schema:issn 0010-3616
    55 1432-0916
    56 schema:name Communications in Mathematical Physics
    57 rdf:type schema:Periodical
    58 sg:person.01327752120.28 schema:affiliation https://www.grid.ac/institutes/grid.425208.9
    59 schema:familyName Bakhtin
    60 schema:givenName Yuri
    61 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327752120.28
    62 rdf:type schema:Person
    63 sg:person.014211271235.32 schema:affiliation https://www.grid.ac/institutes/grid.425208.9
    64 schema:familyName Arnold
    65 schema:givenName Maxim
    66 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014211271235.32
    67 rdf:type schema:Person
    68 sg:person.015076513141.11 schema:affiliation https://www.grid.ac/institutes/grid.425208.9
    69 schema:familyName Dinaburg
    70 schema:givenName Efim
    71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015076513141.11
    72 rdf:type schema:Person
    73 sg:pub.10.1007/bf00281355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044297773
    74 https://doi.org/10.1007/bf00281355
    75 rdf:type schema:CreativeWork
    76 sg:pub.10.1007/bf00387712 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018354786
    77 https://doi.org/10.1007/bf00387712
    78 rdf:type schema:CreativeWork
    79 sg:pub.10.1007/pl00000973 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023446693
    80 https://doi.org/10.1007/pl00000973
    81 rdf:type schema:CreativeWork
    82 https://doi.org/10.1006/jfan.1999.3550 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002010878
    83 rdf:type schema:CreativeWork
    84 https://doi.org/10.1016/0022-1236(89)90015-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024562153
    85 rdf:type schema:CreativeWork
    86 https://doi.org/10.1016/s1874-5792(03)80006-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1029384857
    87 rdf:type schema:CreativeWork
    88 https://doi.org/10.1142/s0219199799000183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062991768
    89 rdf:type schema:CreativeWork
    90 https://doi.org/10.4213/rm610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072370324
    91 rdf:type schema:CreativeWork
    92 https://www.grid.ac/institutes/grid.425208.9 schema:alternateName Institute of Earthquake Prediction Theory and Mathematical Geophysics
    93 schema:name International Institute of Earthquake Prediction Theory and Mathematical Geophysics, 113556, Moscow, Russia
    94 Warshavskoe sh. 79, kor.2, 113556, Moscow, Russia
    95 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...