Elliptic Eigenvalue Problems with Large Drift and Applications to Nonlinear Propagation Phenomena View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2005-02

AUTHORS

Henri Berestycki, François Hamel, Nikolai Nadirashvili

ABSTRACT

This paper is concerned with the asymptotic behaviour of the principal eigenvalue of some linear elliptic equations in the limit of high first-order coefficients. Roughly speaking, one of the main results says that the principal eigenvalue, with Dirichlet boundary conditions, is bounded as the amplitude of the coefficients of the first-order derivatives goes to infinity if and only if the associated dynamical system has a first integral, and the limiting eigenvalue is then determined through the minimization of the Dirichlet functional over all first integrals. A parabolic version of these results, as well as other results for more general equations, are given. Some of the main consequences concern the influence of high advection or drift on the speed of propagation of pulsating travelling fronts. More... »

PAGES

451-480

References to SciGraph publications

  • 1990-03. Multi-dimensional travelling-wave solutions of a flame propagation model in ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS
  • 2000-08. Bulk Burning Rate in¶Passive–Reactive Diffusion in ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS
  • 1995. Wave Front Propagation for KPP-Type Equations in SURVEYS IN APPLIED MATHEMATICS
  • 2002. The Influence of Advection on the Propagation of Fronts in Reaction-Diffusion Equations in NONLINEAR PDE’S IN CONDENSED MATTER AND REACTIVE FLOWS
  • 1992-09. Existence of planar flame fronts in convective-diffusive periodic media in ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00220-004-1201-9

    DOI

    http://dx.doi.org/10.1007/s00220-004-1201-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1049109692


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Centre d'Analyse et de Math\u00e9matique Sociales", 
              "id": "https://www.grid.ac/institutes/grid.463832.8", 
              "name": [
                "EHESS, CAMS, 54 Boulevard Raspail, 75006, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Berestycki", 
            "givenName": "Henri", 
            "id": "sg:person.01162765762.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162765762.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Aix-Marseille University", 
              "id": "https://www.grid.ac/institutes/grid.5399.6", 
              "name": [
                "Universit\u00e9 Aix-Marseille III, LATP, Facult\u00e9 des Sciences et Techniques, Case cour A, Avenue Escadrille Normandie-Niemen, 13397, Marseille Cedex 20, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hamel", 
            "givenName": "Fran\u00e7ois", 
            "id": "sg:person.01126773333.74", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126773333.74"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "French National Centre for Scientific Research", 
              "id": "https://www.grid.ac/institutes/grid.4444.0", 
              "name": [
                "Department of Mathematics, University of Chicago, 5734 University Avenue, 60637-1546, Chicago, IL, USA", 
                "CNRS, LATP, CMI, 39 r.F. Joliot-Curie, 13453, Marseille Cedex 13, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nadirashvili", 
            "givenName": "Nikolai", 
            "id": "sg:person.014464755010.82", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014464755010.82"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s002050000090", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003964368", 
              "https://doi.org/10.1007/s002050000090"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00375699", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005019280", 
              "https://doi.org/10.1007/bf00375699"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cpa.3160470105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009280777"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cpa.3160470105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009280777"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cpa.3160310406", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010166147"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cpa.3160310406", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010166147"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-5193(79)90258-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012245994"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cpa.3022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012826815"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00410613", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022476954", 
              "https://doi.org/10.1007/bf00410613"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00410613", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022476954", 
              "https://doi.org/10.1007/bf00410613"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0001-8708(78)90130-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022953747"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-010-0307-0_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027070739", 
              "https://doi.org/10.1007/978-94-010-0307-0_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-010-0307-0_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027070739", 
              "https://doi.org/10.1007/978-94-010-0307-0_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4615-1991-1_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050758790", 
              "https://doi.org/10.1007/978-1-4615-1991-1_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4615-1991-1_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050758790", 
              "https://doi.org/10.1007/978-1-4615-1991-1_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1515/9781400881598", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051761795"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cpa.3000", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052227822"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0951-7715/7/1/001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059110840"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/s0036139992236785", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062875046"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/s0036139995294743", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062875341"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/s0036139999361148", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062875694"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/s0036144599364296", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062878029"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/aop/1023481117", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064403140"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4171/jems/26", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072317848"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/9789812812841_0016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1088701009"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2005-02", 
        "datePublishedReg": "2005-02-01", 
        "description": "This paper is concerned with the asymptotic behaviour of the principal eigenvalue of some linear elliptic equations in the limit of high first-order coefficients. Roughly speaking, one of the main results says that the principal eigenvalue, with Dirichlet boundary conditions, is bounded as the amplitude of the coefficients of the first-order derivatives goes to infinity if and only if the associated dynamical system has a first integral, and the limiting eigenvalue is then determined through the minimization of the Dirichlet functional over all first integrals. A parabolic version of these results, as well as other results for more general equations, are given. Some of the main consequences concern the influence of high advection or drift on the speed of propagation of pulsating travelling fronts.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00220-004-1201-9", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136216", 
            "issn": [
              "0010-3616", 
              "1432-0916"
            ], 
            "name": "Communications in Mathematical Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "253"
          }
        ], 
        "name": "Elliptic Eigenvalue Problems with Large Drift and Applications to Nonlinear Propagation Phenomena", 
        "pagination": "451-480", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "e9f39d4d3a69c0f2fc42bd8ce7b5e01af243fdce043ab0ead08e2e01c9b21285"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00220-004-1201-9"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1049109692"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00220-004-1201-9", 
          "https://app.dimensions.ai/details/publication/pub.1049109692"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T16:43", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000516.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs00220-004-1201-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00220-004-1201-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00220-004-1201-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00220-004-1201-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00220-004-1201-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    147 TRIPLES      21 PREDICATES      47 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00220-004-1201-9 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N0c4e1fc6be874ffca739a19f48abf8b5
    4 schema:citation sg:pub.10.1007/978-1-4615-1991-1_1
    5 sg:pub.10.1007/978-94-010-0307-0_2
    6 sg:pub.10.1007/bf00375699
    7 sg:pub.10.1007/bf00410613
    8 sg:pub.10.1007/s002050000090
    9 https://doi.org/10.1002/cpa.3000
    10 https://doi.org/10.1002/cpa.3022
    11 https://doi.org/10.1002/cpa.3160310406
    12 https://doi.org/10.1002/cpa.3160470105
    13 https://doi.org/10.1016/0001-8708(78)90130-5
    14 https://doi.org/10.1016/0022-5193(79)90258-3
    15 https://doi.org/10.1088/0951-7715/7/1/001
    16 https://doi.org/10.1137/s0036139992236785
    17 https://doi.org/10.1137/s0036139995294743
    18 https://doi.org/10.1137/s0036139999361148
    19 https://doi.org/10.1137/s0036144599364296
    20 https://doi.org/10.1142/9789812812841_0016
    21 https://doi.org/10.1214/aop/1023481117
    22 https://doi.org/10.1515/9781400881598
    23 https://doi.org/10.4171/jems/26
    24 schema:datePublished 2005-02
    25 schema:datePublishedReg 2005-02-01
    26 schema:description This paper is concerned with the asymptotic behaviour of the principal eigenvalue of some linear elliptic equations in the limit of high first-order coefficients. Roughly speaking, one of the main results says that the principal eigenvalue, with Dirichlet boundary conditions, is bounded as the amplitude of the coefficients of the first-order derivatives goes to infinity if and only if the associated dynamical system has a first integral, and the limiting eigenvalue is then determined through the minimization of the Dirichlet functional over all first integrals. A parabolic version of these results, as well as other results for more general equations, are given. Some of the main consequences concern the influence of high advection or drift on the speed of propagation of pulsating travelling fronts.
    27 schema:genre research_article
    28 schema:inLanguage en
    29 schema:isAccessibleForFree true
    30 schema:isPartOf N51dcb295ea0943dda91e17040ede6579
    31 N79a80fc6782b41f0aeb5c6698dc943e4
    32 sg:journal.1136216
    33 schema:name Elliptic Eigenvalue Problems with Large Drift and Applications to Nonlinear Propagation Phenomena
    34 schema:pagination 451-480
    35 schema:productId N378df5e2232e428f8282532f31b7036f
    36 N86e5d309559c49dbba2c44d543d4edb7
    37 Naee15aeb16e644819807330556fc391c
    38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049109692
    39 https://doi.org/10.1007/s00220-004-1201-9
    40 schema:sdDatePublished 2019-04-10T16:43
    41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    42 schema:sdPublisher N6a61ade528744294a9e4c125cfc72e06
    43 schema:url http://link.springer.com/10.1007%2Fs00220-004-1201-9
    44 sgo:license sg:explorer/license/
    45 sgo:sdDataset articles
    46 rdf:type schema:ScholarlyArticle
    47 N0c4e1fc6be874ffca739a19f48abf8b5 rdf:first sg:person.01162765762.52
    48 rdf:rest Nc94cacd30c204cf18ff9c802ff21ce74
    49 N21b586daa2db4c21a5f6edf7b6e64592 rdf:first sg:person.014464755010.82
    50 rdf:rest rdf:nil
    51 N378df5e2232e428f8282532f31b7036f schema:name dimensions_id
    52 schema:value pub.1049109692
    53 rdf:type schema:PropertyValue
    54 N51dcb295ea0943dda91e17040ede6579 schema:issueNumber 2
    55 rdf:type schema:PublicationIssue
    56 N6a61ade528744294a9e4c125cfc72e06 schema:name Springer Nature - SN SciGraph project
    57 rdf:type schema:Organization
    58 N79a80fc6782b41f0aeb5c6698dc943e4 schema:volumeNumber 253
    59 rdf:type schema:PublicationVolume
    60 N86e5d309559c49dbba2c44d543d4edb7 schema:name readcube_id
    61 schema:value e9f39d4d3a69c0f2fc42bd8ce7b5e01af243fdce043ab0ead08e2e01c9b21285
    62 rdf:type schema:PropertyValue
    63 Naee15aeb16e644819807330556fc391c schema:name doi
    64 schema:value 10.1007/s00220-004-1201-9
    65 rdf:type schema:PropertyValue
    66 Nc94cacd30c204cf18ff9c802ff21ce74 rdf:first sg:person.01126773333.74
    67 rdf:rest N21b586daa2db4c21a5f6edf7b6e64592
    68 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    69 schema:name Mathematical Sciences
    70 rdf:type schema:DefinedTerm
    71 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    72 schema:name Pure Mathematics
    73 rdf:type schema:DefinedTerm
    74 sg:journal.1136216 schema:issn 0010-3616
    75 1432-0916
    76 schema:name Communications in Mathematical Physics
    77 rdf:type schema:Periodical
    78 sg:person.01126773333.74 schema:affiliation https://www.grid.ac/institutes/grid.5399.6
    79 schema:familyName Hamel
    80 schema:givenName François
    81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126773333.74
    82 rdf:type schema:Person
    83 sg:person.01162765762.52 schema:affiliation https://www.grid.ac/institutes/grid.463832.8
    84 schema:familyName Berestycki
    85 schema:givenName Henri
    86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162765762.52
    87 rdf:type schema:Person
    88 sg:person.014464755010.82 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
    89 schema:familyName Nadirashvili
    90 schema:givenName Nikolai
    91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014464755010.82
    92 rdf:type schema:Person
    93 sg:pub.10.1007/978-1-4615-1991-1_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050758790
    94 https://doi.org/10.1007/978-1-4615-1991-1_1
    95 rdf:type schema:CreativeWork
    96 sg:pub.10.1007/978-94-010-0307-0_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027070739
    97 https://doi.org/10.1007/978-94-010-0307-0_2
    98 rdf:type schema:CreativeWork
    99 sg:pub.10.1007/bf00375699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005019280
    100 https://doi.org/10.1007/bf00375699
    101 rdf:type schema:CreativeWork
    102 sg:pub.10.1007/bf00410613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022476954
    103 https://doi.org/10.1007/bf00410613
    104 rdf:type schema:CreativeWork
    105 sg:pub.10.1007/s002050000090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003964368
    106 https://doi.org/10.1007/s002050000090
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1002/cpa.3000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052227822
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1002/cpa.3022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012826815
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1002/cpa.3160310406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010166147
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1002/cpa.3160470105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009280777
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1016/0001-8708(78)90130-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022953747
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1016/0022-5193(79)90258-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012245994
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1088/0951-7715/7/1/001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059110840
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1137/s0036139992236785 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062875046
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1137/s0036139995294743 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062875341
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1137/s0036139999361148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062875694
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1137/s0036144599364296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062878029
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1142/9789812812841_0016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088701009
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1214/aop/1023481117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064403140
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1515/9781400881598 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051761795
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.4171/jems/26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072317848
    137 rdf:type schema:CreativeWork
    138 https://www.grid.ac/institutes/grid.4444.0 schema:alternateName French National Centre for Scientific Research
    139 schema:name CNRS, LATP, CMI, 39 r.F. Joliot-Curie, 13453, Marseille Cedex 13, France
    140 Department of Mathematics, University of Chicago, 5734 University Avenue, 60637-1546, Chicago, IL, USA
    141 rdf:type schema:Organization
    142 https://www.grid.ac/institutes/grid.463832.8 schema:alternateName Centre d'Analyse et de Mathématique Sociales
    143 schema:name EHESS, CAMS, 54 Boulevard Raspail, 75006, Paris, France
    144 rdf:type schema:Organization
    145 https://www.grid.ac/institutes/grid.5399.6 schema:alternateName Aix-Marseille University
    146 schema:name Université Aix-Marseille III, LATP, Faculté des Sciences et Techniques, Case cour A, Avenue Escadrille Normandie-Niemen, 13397, Marseille Cedex 20, France
    147 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...