The Topological Vertex View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2004-09-24

AUTHORS

Mina Aganagic, Albrecht Klemm, Marcos Mariño, Cumrun Vafa

ABSTRACT

We construct a cubic field theory which provides all genus amplitudes of the topological A-model for all non-compact toric Calabi-Yau threefolds. The topology of a given Feynman diagram encodes the topology of a fixed Calabi-Yau, with Schwinger parameters playing the role of Kähler classes of the threefold. We interpret this result as an operatorial computation of the amplitudes in the B-model mirror which is the quantum Kodaira-Spencer theory. The only degree of freedom of this theory is an unconventional chiral scalar on a Riemann surface. In this setup we identify the B-branes on the mirror Riemann surface as fermions related to the chiral boson by bosonization. More... »

PAGES

425-478

References to SciGraph publications

  • 1995. Enumeration of Rational Curves Via Torus Actions in THE MODULI SPACE OF CURVES
  • 1989-09. Quantum field theory and the Jones polynomial in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2000-11-03. Knots, links and branes at large N in JOURNAL OF HIGH ENERGY PHYSICS
  • 1988-09. Topological sigma models in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1982-07. Calibrated geometries in ACTA MATHEMATICA
  • 1998-01-06. Webs of (p,q) 5-branes, five dimensional field theories and grid diagrams in JOURNAL OF HIGH ENERGY PHYSICS
  • 2004-02-06. Matrix model as a mirror of Chern-Simons theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 2004-04-09. All Loop Topological String Amplitudes from Chern-Simons Theory in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1995. Chern-Simons gauge theory as a string theory in THE FLOER MEMORIAL VOLUME
  • 1994-10. Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2001-03. Polynomial Invariants for Torus Knots¶and Topological Strings in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00220-004-1162-z

    DOI

    http://dx.doi.org/10.1007/s00220-004-1162-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1047832310


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Jefferson Physical Laboratory, Harvard University, 02138, Cambridge, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Jefferson Physical Laboratory, Harvard University, 02138, Cambridge, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Aganagic", 
            "givenName": "Mina", 
            "id": "sg:person.0677553504.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677553504.21"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut f\u00fcr Physik, Humboldt-Universit\u00e4t zu Berlin, 10115, Berlin, Germany", 
              "id": "http://www.grid.ac/institutes/grid.7468.d", 
              "name": [
                "Institut f\u00fcr Physik, Humboldt-Universit\u00e4t zu Berlin, 10115, Berlin, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Klemm", 
            "givenName": "Albrecht", 
            "id": "sg:person.07535601751.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07535601751.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Theory Division, CERN, Geneva 23, 1211, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.9132.9", 
              "name": [
                "Theory Division, CERN, Geneva 23, 1211, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mari\u00f1o", 
            "givenName": "Marcos", 
            "id": "sg:person.014141535632.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014141535632.26"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "California Institute of Technology, 452-48, 91125, Pasadena, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.20861.3d", 
              "name": [
                "Jefferson Physical Laboratory, Harvard University, 02138, Cambridge, MA, USA", 
                "California Institute of Technology, 452-48, 91125, Pasadena, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vafa", 
            "givenName": "Cumrun", 
            "id": "sg:person.014523005000.99", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014523005000.99"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-1-4612-4264-2_12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006492963", 
              "https://doi.org/10.1007/978-1-4612-4264-2_12"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01466725", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033100303", 
              "https://doi.org/10.1007/bf01466725"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002200100374", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028849541", 
              "https://doi.org/10.1007/s002200100374"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-004-1067-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040658724", 
              "https://doi.org/10.1007/s00220-004-1067-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2000/11/007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000253180", 
              "https://doi.org/10.1088/1126-6708/2000/11/007"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01217730", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033035951", 
              "https://doi.org/10.1007/bf01217730"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02099774", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049578045", 
              "https://doi.org/10.1007/bf02099774"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-0348-9217-9_28", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006797177", 
              "https://doi.org/10.1007/978-3-0348-9217-9_28"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2004/02/010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009823693", 
              "https://doi.org/10.1088/1126-6708/2004/02/010"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02392726", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036490061", 
              "https://doi.org/10.1007/bf02392726"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/1998/01/002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026223761", 
              "https://doi.org/10.1088/1126-6708/1998/01/002"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2004-09-24", 
        "datePublishedReg": "2004-09-24", 
        "description": "We construct a cubic field theory which provides all genus amplitudes of the topological A-model for all non-compact toric Calabi-Yau threefolds. The topology of a given Feynman diagram encodes the topology of a fixed Calabi-Yau, with Schwinger parameters playing the role of K\u00e4hler classes of the threefold. We interpret this result as an operatorial computation of the amplitudes in the B-model mirror which is the quantum Kodaira-Spencer theory. The only degree of freedom of this theory is an unconventional chiral scalar on a Riemann surface. In this setup we identify the B-branes on the mirror Riemann surface as fermions related to the chiral boson by bosonization.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00220-004-1162-z", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136216", 
            "issn": [
              "0010-3616", 
              "1432-0916"
            ], 
            "name": "Communications in Mathematical Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "254"
          }
        ], 
        "keywords": [
          "Riemann surface", 
          "toric Calabi-Yau threefolds", 
          "cubic field theory", 
          "Calabi-Yau threefolds", 
          "genus amplitudes", 
          "field theory", 
          "Calabi-Yau", 
          "K\u00e4hler class", 
          "topological vertex", 
          "Schwinger parameters", 
          "Feynman diagrams", 
          "chiral bosons", 
          "only degree", 
          "chiral scalar", 
          "theory", 
          "topology", 
          "threefold", 
          "bosonization", 
          "branes", 
          "scalar", 
          "computation", 
          "fermions", 
          "vertices", 
          "amplitude", 
          "model mirrors", 
          "bosons", 
          "class", 
          "diagram", 
          "freedom", 
          "parameters", 
          "model", 
          "mirror", 
          "setup", 
          "surface", 
          "results", 
          "degree", 
          "role"
        ], 
        "name": "The Topological Vertex", 
        "pagination": "425-478", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1047832310"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00220-004-1162-z"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00220-004-1162-z", 
          "https://app.dimensions.ai/details/publication/pub.1047832310"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:22", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_385.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00220-004-1162-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00220-004-1162-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00220-004-1162-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00220-004-1162-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00220-004-1162-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    170 TRIPLES      22 PREDICATES      73 URIs      54 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00220-004-1162-z schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N3552be42a1824425be6f71d888382847
    4 schema:citation sg:pub.10.1007/978-1-4612-4264-2_12
    5 sg:pub.10.1007/978-3-0348-9217-9_28
    6 sg:pub.10.1007/bf01217730
    7 sg:pub.10.1007/bf01466725
    8 sg:pub.10.1007/bf02099774
    9 sg:pub.10.1007/bf02392726
    10 sg:pub.10.1007/s00220-004-1067-x
    11 sg:pub.10.1007/s002200100374
    12 sg:pub.10.1088/1126-6708/1998/01/002
    13 sg:pub.10.1088/1126-6708/2000/11/007
    14 sg:pub.10.1088/1126-6708/2004/02/010
    15 schema:datePublished 2004-09-24
    16 schema:datePublishedReg 2004-09-24
    17 schema:description We construct a cubic field theory which provides all genus amplitudes of the topological A-model for all non-compact toric Calabi-Yau threefolds. The topology of a given Feynman diagram encodes the topology of a fixed Calabi-Yau, with Schwinger parameters playing the role of Kähler classes of the threefold. We interpret this result as an operatorial computation of the amplitudes in the B-model mirror which is the quantum Kodaira-Spencer theory. The only degree of freedom of this theory is an unconventional chiral scalar on a Riemann surface. In this setup we identify the B-branes on the mirror Riemann surface as fermions related to the chiral boson by bosonization.
    18 schema:genre article
    19 schema:inLanguage en
    20 schema:isAccessibleForFree true
    21 schema:isPartOf N511e1411bc9c4b6f99c7c8fa1a020731
    22 Neae05df56820444d9a14b8b5f18c8cab
    23 sg:journal.1136216
    24 schema:keywords Calabi-Yau
    25 Calabi-Yau threefolds
    26 Feynman diagrams
    27 Kähler class
    28 Riemann surface
    29 Schwinger parameters
    30 amplitude
    31 bosonization
    32 bosons
    33 branes
    34 chiral bosons
    35 chiral scalar
    36 class
    37 computation
    38 cubic field theory
    39 degree
    40 diagram
    41 fermions
    42 field theory
    43 freedom
    44 genus amplitudes
    45 mirror
    46 model
    47 model mirrors
    48 only degree
    49 parameters
    50 results
    51 role
    52 scalar
    53 setup
    54 surface
    55 theory
    56 threefold
    57 topological vertex
    58 topology
    59 toric Calabi-Yau threefolds
    60 vertices
    61 schema:name The Topological Vertex
    62 schema:pagination 425-478
    63 schema:productId N2c8fc510fb3b487aa288a77baddbe515
    64 N9021b7bc7fb04cb39795be0c35ebc27c
    65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047832310
    66 https://doi.org/10.1007/s00220-004-1162-z
    67 schema:sdDatePublished 2022-05-20T07:22
    68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    69 schema:sdPublisher N5664f446e10540138e30f3b4ead93d3b
    70 schema:url https://doi.org/10.1007/s00220-004-1162-z
    71 sgo:license sg:explorer/license/
    72 sgo:sdDataset articles
    73 rdf:type schema:ScholarlyArticle
    74 N2c8fc510fb3b487aa288a77baddbe515 schema:name dimensions_id
    75 schema:value pub.1047832310
    76 rdf:type schema:PropertyValue
    77 N3552be42a1824425be6f71d888382847 rdf:first sg:person.0677553504.21
    78 rdf:rest N4e050cc472ed4ef4830b98b37cd1a065
    79 N39f17ee67ade4633b5b6269f516b5e12 rdf:first sg:person.014523005000.99
    80 rdf:rest rdf:nil
    81 N4e050cc472ed4ef4830b98b37cd1a065 rdf:first sg:person.07535601751.07
    82 rdf:rest N7d9cdfdbf5e648479ae4aa7327efb419
    83 N511e1411bc9c4b6f99c7c8fa1a020731 schema:volumeNumber 254
    84 rdf:type schema:PublicationVolume
    85 N5664f446e10540138e30f3b4ead93d3b schema:name Springer Nature - SN SciGraph project
    86 rdf:type schema:Organization
    87 N7d9cdfdbf5e648479ae4aa7327efb419 rdf:first sg:person.014141535632.26
    88 rdf:rest N39f17ee67ade4633b5b6269f516b5e12
    89 N9021b7bc7fb04cb39795be0c35ebc27c schema:name doi
    90 schema:value 10.1007/s00220-004-1162-z
    91 rdf:type schema:PropertyValue
    92 Neae05df56820444d9a14b8b5f18c8cab schema:issueNumber 2
    93 rdf:type schema:PublicationIssue
    94 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    95 schema:name Mathematical Sciences
    96 rdf:type schema:DefinedTerm
    97 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    98 schema:name Pure Mathematics
    99 rdf:type schema:DefinedTerm
    100 sg:journal.1136216 schema:issn 0010-3616
    101 1432-0916
    102 schema:name Communications in Mathematical Physics
    103 schema:publisher Springer Nature
    104 rdf:type schema:Periodical
    105 sg:person.014141535632.26 schema:affiliation grid-institutes:grid.9132.9
    106 schema:familyName Mariño
    107 schema:givenName Marcos
    108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014141535632.26
    109 rdf:type schema:Person
    110 sg:person.014523005000.99 schema:affiliation grid-institutes:grid.20861.3d
    111 schema:familyName Vafa
    112 schema:givenName Cumrun
    113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014523005000.99
    114 rdf:type schema:Person
    115 sg:person.0677553504.21 schema:affiliation grid-institutes:grid.38142.3c
    116 schema:familyName Aganagic
    117 schema:givenName Mina
    118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677553504.21
    119 rdf:type schema:Person
    120 sg:person.07535601751.07 schema:affiliation grid-institutes:grid.7468.d
    121 schema:familyName Klemm
    122 schema:givenName Albrecht
    123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07535601751.07
    124 rdf:type schema:Person
    125 sg:pub.10.1007/978-1-4612-4264-2_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006492963
    126 https://doi.org/10.1007/978-1-4612-4264-2_12
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1007/978-3-0348-9217-9_28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006797177
    129 https://doi.org/10.1007/978-3-0348-9217-9_28
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1007/bf01217730 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033035951
    132 https://doi.org/10.1007/bf01217730
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1007/bf01466725 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033100303
    135 https://doi.org/10.1007/bf01466725
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1007/bf02099774 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049578045
    138 https://doi.org/10.1007/bf02099774
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1007/bf02392726 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036490061
    141 https://doi.org/10.1007/bf02392726
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1007/s00220-004-1067-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1040658724
    144 https://doi.org/10.1007/s00220-004-1067-x
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1007/s002200100374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028849541
    147 https://doi.org/10.1007/s002200100374
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1088/1126-6708/1998/01/002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026223761
    150 https://doi.org/10.1088/1126-6708/1998/01/002
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1088/1126-6708/2000/11/007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000253180
    153 https://doi.org/10.1088/1126-6708/2000/11/007
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1088/1126-6708/2004/02/010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009823693
    156 https://doi.org/10.1088/1126-6708/2004/02/010
    157 rdf:type schema:CreativeWork
    158 grid-institutes:grid.20861.3d schema:alternateName California Institute of Technology, 452-48, 91125, Pasadena, CA, USA
    159 schema:name California Institute of Technology, 452-48, 91125, Pasadena, CA, USA
    160 Jefferson Physical Laboratory, Harvard University, 02138, Cambridge, MA, USA
    161 rdf:type schema:Organization
    162 grid-institutes:grid.38142.3c schema:alternateName Jefferson Physical Laboratory, Harvard University, 02138, Cambridge, MA, USA
    163 schema:name Jefferson Physical Laboratory, Harvard University, 02138, Cambridge, MA, USA
    164 rdf:type schema:Organization
    165 grid-institutes:grid.7468.d schema:alternateName Institut für Physik, Humboldt-Universität zu Berlin, 10115, Berlin, Germany
    166 schema:name Institut für Physik, Humboldt-Universität zu Berlin, 10115, Berlin, Germany
    167 rdf:type schema:Organization
    168 grid-institutes:grid.9132.9 schema:alternateName Theory Division, CERN, Geneva 23, 1211, Switzerland
    169 schema:name Theory Division, CERN, Geneva 23, 1211, Switzerland
    170 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...