2004-09-24
AUTHORSMina Aganagic, Albrecht Klemm, Marcos Mariño, Cumrun Vafa
ABSTRACTWe construct a cubic field theory which provides all genus amplitudes of the topological A-model for all non-compact toric Calabi-Yau threefolds. The topology of a given Feynman diagram encodes the topology of a fixed Calabi-Yau, with Schwinger parameters playing the role of Kähler classes of the threefold. We interpret this result as an operatorial computation of the amplitudes in the B-model mirror which is the quantum Kodaira-Spencer theory. The only degree of freedom of this theory is an unconventional chiral scalar on a Riemann surface. In this setup we identify the B-branes on the mirror Riemann surface as fermions related to the chiral boson by bosonization. More... »
PAGES425-478
http://scigraph.springernature.com/pub.10.1007/s00220-004-1162-z
DOIhttp://dx.doi.org/10.1007/s00220-004-1162-z
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1047832310
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Jefferson Physical Laboratory, Harvard University, 02138, Cambridge, MA, USA",
"id": "http://www.grid.ac/institutes/grid.38142.3c",
"name": [
"Jefferson Physical Laboratory, Harvard University, 02138, Cambridge, MA, USA"
],
"type": "Organization"
},
"familyName": "Aganagic",
"givenName": "Mina",
"id": "sg:person.0677553504.21",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677553504.21"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institut f\u00fcr Physik, Humboldt-Universit\u00e4t zu Berlin, 10115, Berlin, Germany",
"id": "http://www.grid.ac/institutes/grid.7468.d",
"name": [
"Institut f\u00fcr Physik, Humboldt-Universit\u00e4t zu Berlin, 10115, Berlin, Germany"
],
"type": "Organization"
},
"familyName": "Klemm",
"givenName": "Albrecht",
"id": "sg:person.07535601751.07",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07535601751.07"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Theory Division, CERN, Geneva 23, 1211, Switzerland",
"id": "http://www.grid.ac/institutes/grid.9132.9",
"name": [
"Theory Division, CERN, Geneva 23, 1211, Switzerland"
],
"type": "Organization"
},
"familyName": "Mari\u00f1o",
"givenName": "Marcos",
"id": "sg:person.014141535632.26",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014141535632.26"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "California Institute of Technology, 452-48, 91125, Pasadena, CA, USA",
"id": "http://www.grid.ac/institutes/grid.20861.3d",
"name": [
"Jefferson Physical Laboratory, Harvard University, 02138, Cambridge, MA, USA",
"California Institute of Technology, 452-48, 91125, Pasadena, CA, USA"
],
"type": "Organization"
},
"familyName": "Vafa",
"givenName": "Cumrun",
"id": "sg:person.014523005000.99",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014523005000.99"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/978-1-4612-4264-2_12",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006492963",
"https://doi.org/10.1007/978-1-4612-4264-2_12"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s002200100374",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028849541",
"https://doi.org/10.1007/s002200100374"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-0348-9217-9_28",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006797177",
"https://doi.org/10.1007/978-3-0348-9217-9_28"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02099774",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049578045",
"https://doi.org/10.1007/bf02099774"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02392726",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036490061",
"https://doi.org/10.1007/bf02392726"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1088/1126-6708/2000/11/007",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000253180",
"https://doi.org/10.1088/1126-6708/2000/11/007"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00220-004-1067-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040658724",
"https://doi.org/10.1007/s00220-004-1067-x"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1088/1126-6708/1998/01/002",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026223761",
"https://doi.org/10.1088/1126-6708/1998/01/002"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01217730",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033035951",
"https://doi.org/10.1007/bf01217730"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1088/1126-6708/2004/02/010",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009823693",
"https://doi.org/10.1088/1126-6708/2004/02/010"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01466725",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033100303",
"https://doi.org/10.1007/bf01466725"
],
"type": "CreativeWork"
}
],
"datePublished": "2004-09-24",
"datePublishedReg": "2004-09-24",
"description": "We construct a cubic field theory which provides all genus amplitudes of the topological A-model for all non-compact toric Calabi-Yau threefolds. The topology of a given Feynman diagram encodes the topology of a fixed Calabi-Yau, with Schwinger parameters playing the role of K\u00e4hler classes of the threefold. We interpret this result as an operatorial computation of the amplitudes in the B-model mirror which is the quantum Kodaira-Spencer theory. The only degree of freedom of this theory is an unconventional chiral scalar on a Riemann surface. In this setup we identify the B-branes on the mirror Riemann surface as fermions related to the chiral boson by bosonization.",
"genre": "article",
"id": "sg:pub.10.1007/s00220-004-1162-z",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1136216",
"issn": [
"0010-3616",
"1432-0916"
],
"name": "Communications in Mathematical Physics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "254"
}
],
"keywords": [
"Riemann surface",
"toric Calabi-Yau threefolds",
"cubic field theory",
"Calabi-Yau threefolds",
"genus amplitudes",
"field theory",
"Calabi-Yau",
"K\u00e4hler class",
"topological vertex",
"Schwinger parameters",
"Feynman diagrams",
"chiral bosons",
"only degree",
"chiral scalar",
"theory",
"topology",
"threefold",
"bosonization",
"branes",
"scalar",
"computation",
"fermions",
"vertices",
"amplitude",
"model mirrors",
"bosons",
"class",
"diagram",
"freedom",
"parameters",
"model",
"mirror",
"setup",
"surface",
"results",
"degree",
"role"
],
"name": "The Topological Vertex",
"pagination": "425-478",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1047832310"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00220-004-1162-z"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00220-004-1162-z",
"https://app.dimensions.ai/details/publication/pub.1047832310"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T09:52",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_387.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s00220-004-1162-z"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00220-004-1162-z'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00220-004-1162-z'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00220-004-1162-z'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00220-004-1162-z'
This table displays all metadata directly associated to this object as RDF triples.
170 TRIPLES
22 PREDICATES
73 URIs
54 LITERALS
6 BLANK NODES