On Shor’s Channel Extension and Constrained Channels View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2004-08

AUTHORS

A.S. Holevo, M.E. Shirokov

ABSTRACT

Several equivalent formulations of the additivity conjecture for constrained channels, which formally is substantially stronger than the unconstrained additivity, are given. To this end a characteristic property of the optimal ensemble for such a channel is derived, generalizing the maximal distance property. It is shown that the additivity conjecture for constrained channels holds true for certain nontrivial classes of channels. After giving an algebraic formulation for Shor’s channel extension, its main asymptotic property is proved. It is then used to show that additivity for two constrained channels can be reduced to the same problem for unconstrained channels, and hence, ‘‘global’’ additivity for channels with arbitrary constraints is equivalent to additivity without constraints. More... »

PAGES

417-430

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00220-004-1116-5

DOI

http://dx.doi.org/10.1007/s00220-004-1116-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1046003655


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Steklov Mathematical Institute", 
          "id": "https://www.grid.ac/institutes/grid.426543.2", 
          "name": [
            "Steklov Mathematical Institute, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Holevo", 
        "givenName": "A.S.", 
        "id": "sg:person.012742037634.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012742037634.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow Institute of Physics and Technology", 
          "id": "https://www.grid.ac/institutes/grid.18763.3b", 
          "name": [
            "Moscow Institute of Physics and Technology, 141700, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shirokov", 
        "givenName": "M.E.", 
        "id": "sg:person.014741114345.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014741114345.19"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physreva.61.064301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007896501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.61.064301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007896501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.68.032317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013933433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.68.032317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013933433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1009664331611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017445217", 
          "https://doi.org/10.1023/a:1009664331611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-003-0987-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018626239", 
          "https://doi.org/10.1007/s00220-003-0987-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-003-0981-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020153714", 
          "https://doi.org/10.1007/s00220-003-0981-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1498000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021978041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-003-0919-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049631127", 
          "https://doi.org/10.1007/s00220-003-0919-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.527179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058104198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.51.2738", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060490086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.51.2738", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060490086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/conm/305/05225", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1089200378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109710137", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-57997-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109710137", 
          "https://doi.org/10.1007/978-3-642-57997-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-57997-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109710137", 
          "https://doi.org/10.1007/978-3-642-57997-4"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-08", 
    "datePublishedReg": "2004-08-01", 
    "description": "Several equivalent formulations of the additivity conjecture for constrained channels, which formally is substantially stronger than the unconstrained additivity, are given. To this end a characteristic property of the optimal ensemble for such a channel is derived, generalizing the maximal distance property. It is shown that the additivity conjecture for constrained channels holds true for certain nontrivial classes of channels. After giving an algebraic formulation for Shor\u2019s channel extension, its main asymptotic property is proved. It is then used to show that additivity for two constrained channels can be reduced to the same problem for unconstrained channels, and hence, \u2018\u2018global\u2019\u2019 additivity for channels with arbitrary constraints is equivalent to additivity without constraints.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00220-004-1116-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136216", 
        "issn": [
          "0010-3616", 
          "1432-0916"
        ], 
        "name": "Communications in Mathematical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "249"
      }
    ], 
    "name": "On Shor\u2019s Channel Extension and Constrained Channels", 
    "pagination": "417-430", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "db228e218246e5e6ae4cb6886248d091d08ba7cea2cca2daee274d9912cd7c5c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00220-004-1116-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1046003655"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00220-004-1116-5", 
      "https://app.dimensions.ai/details/publication/pub.1046003655"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000594.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00220-004-1116-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00220-004-1116-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00220-004-1116-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00220-004-1116-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00220-004-1116-5'


 

This table displays all metadata directly associated to this object as RDF triples.

111 TRIPLES      21 PREDICATES      39 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00220-004-1116-5 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author Nc8ee5cb351e543e092d0c637c7489393
4 schema:citation sg:pub.10.1007/978-3-642-57997-4
5 sg:pub.10.1007/s00220-003-0919-0
6 sg:pub.10.1007/s00220-003-0981-7
7 sg:pub.10.1007/s00220-003-0987-1
8 sg:pub.10.1023/a:1009664331611
9 https://app.dimensions.ai/details/publication/pub.1109710137
10 https://doi.org/10.1063/1.1498000
11 https://doi.org/10.1063/1.527179
12 https://doi.org/10.1090/conm/305/05225
13 https://doi.org/10.1103/physreva.51.2738
14 https://doi.org/10.1103/physreva.61.064301
15 https://doi.org/10.1103/physreva.68.032317
16 schema:datePublished 2004-08
17 schema:datePublishedReg 2004-08-01
18 schema:description Several equivalent formulations of the additivity conjecture for constrained channels, which formally is substantially stronger than the unconstrained additivity, are given. To this end a characteristic property of the optimal ensemble for such a channel is derived, generalizing the maximal distance property. It is shown that the additivity conjecture for constrained channels holds true for certain nontrivial classes of channels. After giving an algebraic formulation for Shor’s channel extension, its main asymptotic property is proved. It is then used to show that additivity for two constrained channels can be reduced to the same problem for unconstrained channels, and hence, ‘‘global’’ additivity for channels with arbitrary constraints is equivalent to additivity without constraints.
19 schema:genre research_article
20 schema:inLanguage en
21 schema:isAccessibleForFree true
22 schema:isPartOf N2fa5b38a56234775b1fe0cd3d2db4426
23 N71ad332fceed46c0aaf8ba416067d498
24 sg:journal.1136216
25 schema:name On Shor’s Channel Extension and Constrained Channels
26 schema:pagination 417-430
27 schema:productId N3cd8b82e7d3144418c463d19571a8f8d
28 Nbaf209c7fd2e4f3db42f47266db5e408
29 Nf1ccf23d3f4b449ba42b1d81859a8215
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046003655
31 https://doi.org/10.1007/s00220-004-1116-5
32 schema:sdDatePublished 2019-04-10T14:22
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher N6395559e2b624800a4291e1c04c190e2
35 schema:url http://link.springer.com/10.1007%2Fs00220-004-1116-5
36 sgo:license sg:explorer/license/
37 sgo:sdDataset articles
38 rdf:type schema:ScholarlyArticle
39 N2fa5b38a56234775b1fe0cd3d2db4426 schema:issueNumber 2
40 rdf:type schema:PublicationIssue
41 N3cd8b82e7d3144418c463d19571a8f8d schema:name readcube_id
42 schema:value db228e218246e5e6ae4cb6886248d091d08ba7cea2cca2daee274d9912cd7c5c
43 rdf:type schema:PropertyValue
44 N6395559e2b624800a4291e1c04c190e2 schema:name Springer Nature - SN SciGraph project
45 rdf:type schema:Organization
46 N66040d8cce744b6195be2a0b78429591 rdf:first sg:person.014741114345.19
47 rdf:rest rdf:nil
48 N71ad332fceed46c0aaf8ba416067d498 schema:volumeNumber 249
49 rdf:type schema:PublicationVolume
50 Nbaf209c7fd2e4f3db42f47266db5e408 schema:name doi
51 schema:value 10.1007/s00220-004-1116-5
52 rdf:type schema:PropertyValue
53 Nc8ee5cb351e543e092d0c637c7489393 rdf:first sg:person.012742037634.56
54 rdf:rest N66040d8cce744b6195be2a0b78429591
55 Nf1ccf23d3f4b449ba42b1d81859a8215 schema:name dimensions_id
56 schema:value pub.1046003655
57 rdf:type schema:PropertyValue
58 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
59 schema:name Biological Sciences
60 rdf:type schema:DefinedTerm
61 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
62 schema:name Biochemistry and Cell Biology
63 rdf:type schema:DefinedTerm
64 sg:journal.1136216 schema:issn 0010-3616
65 1432-0916
66 schema:name Communications in Mathematical Physics
67 rdf:type schema:Periodical
68 sg:person.012742037634.56 schema:affiliation https://www.grid.ac/institutes/grid.426543.2
69 schema:familyName Holevo
70 schema:givenName A.S.
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012742037634.56
72 rdf:type schema:Person
73 sg:person.014741114345.19 schema:affiliation https://www.grid.ac/institutes/grid.18763.3b
74 schema:familyName Shirokov
75 schema:givenName M.E.
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014741114345.19
77 rdf:type schema:Person
78 sg:pub.10.1007/978-3-642-57997-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109710137
79 https://doi.org/10.1007/978-3-642-57997-4
80 rdf:type schema:CreativeWork
81 sg:pub.10.1007/s00220-003-0919-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049631127
82 https://doi.org/10.1007/s00220-003-0919-0
83 rdf:type schema:CreativeWork
84 sg:pub.10.1007/s00220-003-0981-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020153714
85 https://doi.org/10.1007/s00220-003-0981-7
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/s00220-003-0987-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018626239
88 https://doi.org/10.1007/s00220-003-0987-1
89 rdf:type schema:CreativeWork
90 sg:pub.10.1023/a:1009664331611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017445217
91 https://doi.org/10.1023/a:1009664331611
92 rdf:type schema:CreativeWork
93 https://app.dimensions.ai/details/publication/pub.1109710137 schema:CreativeWork
94 https://doi.org/10.1063/1.1498000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021978041
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1063/1.527179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058104198
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1090/conm/305/05225 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089200378
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1103/physreva.51.2738 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060490086
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1103/physreva.61.064301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007896501
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1103/physreva.68.032317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013933433
105 rdf:type schema:CreativeWork
106 https://www.grid.ac/institutes/grid.18763.3b schema:alternateName Moscow Institute of Physics and Technology
107 schema:name Moscow Institute of Physics and Technology, 141700, Moscow, Russia
108 rdf:type schema:Organization
109 https://www.grid.ac/institutes/grid.426543.2 schema:alternateName Steklov Mathematical Institute
110 schema:name Steklov Mathematical Institute, 119991, Moscow, Russia
111 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...