On Shor’s Channel Extension and Constrained Channels View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2004-08

AUTHORS

A.S. Holevo, M.E. Shirokov

ABSTRACT

Several equivalent formulations of the additivity conjecture for constrained channels, which formally is substantially stronger than the unconstrained additivity, are given. To this end a characteristic property of the optimal ensemble for such a channel is derived, generalizing the maximal distance property. It is shown that the additivity conjecture for constrained channels holds true for certain nontrivial classes of channels. After giving an algebraic formulation for Shor’s channel extension, its main asymptotic property is proved. It is then used to show that additivity for two constrained channels can be reduced to the same problem for unconstrained channels, and hence, ‘‘global’’ additivity for channels with arbitrary constraints is equivalent to additivity without constraints. More... »

PAGES

417-430

References to SciGraph publications

  • 1998-09. Entropy and Optimal Decompositions of States Relative to a Maximal Commutative Subalgebra in OPEN SYSTEMS AND INFORMATION DYNAMICS
  • 1993. Quantum Entropy and Its Use in NONE
  • 2004-04. Remarks on Additivity of the Holevo Channel Capacity and of the Entanglement of Formation in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2004-04. Equivalence of Additivity Questions in Quantum Information Theory in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2004-04. On Strong Superadditivity of the Entanglement of Formation in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00220-004-1116-5

    DOI

    http://dx.doi.org/10.1007/s00220-004-1116-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1046003655


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Steklov Mathematical Institute", 
              "id": "https://www.grid.ac/institutes/grid.426543.2", 
              "name": [
                "Steklov Mathematical Institute, 119991, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Holevo", 
            "givenName": "A.S.", 
            "id": "sg:person.012742037634.56", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012742037634.56"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Moscow Institute of Physics and Technology", 
              "id": "https://www.grid.ac/institutes/grid.18763.3b", 
              "name": [
                "Moscow Institute of Physics and Technology, 141700, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shirokov", 
            "givenName": "M.E.", 
            "id": "sg:person.014741114345.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014741114345.19"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1103/physreva.61.064301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007896501"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.61.064301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007896501"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.68.032317", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013933433"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.68.032317", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013933433"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1009664331611", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017445217", 
              "https://doi.org/10.1023/a:1009664331611"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-003-0987-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018626239", 
              "https://doi.org/10.1007/s00220-003-0987-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-003-0981-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020153714", 
              "https://doi.org/10.1007/s00220-003-0981-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1498000", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021978041"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-003-0919-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049631127", 
              "https://doi.org/10.1007/s00220-003-0919-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.527179", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058104198"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.51.2738", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060490086"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.51.2738", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060490086"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/conm/305/05225", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1089200378"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1109710137", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-57997-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109710137", 
              "https://doi.org/10.1007/978-3-642-57997-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-57997-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109710137", 
              "https://doi.org/10.1007/978-3-642-57997-4"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2004-08", 
        "datePublishedReg": "2004-08-01", 
        "description": "Several equivalent formulations of the additivity conjecture for constrained channels, which formally is substantially stronger than the unconstrained additivity, are given. To this end a characteristic property of the optimal ensemble for such a channel is derived, generalizing the maximal distance property. It is shown that the additivity conjecture for constrained channels holds true for certain nontrivial classes of channels. After giving an algebraic formulation for Shor\u2019s channel extension, its main asymptotic property is proved. It is then used to show that additivity for two constrained channels can be reduced to the same problem for unconstrained channels, and hence, \u2018\u2018global\u2019\u2019 additivity for channels with arbitrary constraints is equivalent to additivity without constraints.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00220-004-1116-5", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136216", 
            "issn": [
              "0010-3616", 
              "1432-0916"
            ], 
            "name": "Communications in Mathematical Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "249"
          }
        ], 
        "name": "On Shor\u2019s Channel Extension and Constrained Channels", 
        "pagination": "417-430", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "db228e218246e5e6ae4cb6886248d091d08ba7cea2cca2daee274d9912cd7c5c"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00220-004-1116-5"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1046003655"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00220-004-1116-5", 
          "https://app.dimensions.ai/details/publication/pub.1046003655"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T14:22", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000594.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs00220-004-1116-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00220-004-1116-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00220-004-1116-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00220-004-1116-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00220-004-1116-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    111 TRIPLES      21 PREDICATES      39 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00220-004-1116-5 schema:about anzsrc-for:06
    2 anzsrc-for:0601
    3 schema:author N0eb18d08a6b84bfa875d2cb5af7d9fb7
    4 schema:citation sg:pub.10.1007/978-3-642-57997-4
    5 sg:pub.10.1007/s00220-003-0919-0
    6 sg:pub.10.1007/s00220-003-0981-7
    7 sg:pub.10.1007/s00220-003-0987-1
    8 sg:pub.10.1023/a:1009664331611
    9 https://app.dimensions.ai/details/publication/pub.1109710137
    10 https://doi.org/10.1063/1.1498000
    11 https://doi.org/10.1063/1.527179
    12 https://doi.org/10.1090/conm/305/05225
    13 https://doi.org/10.1103/physreva.51.2738
    14 https://doi.org/10.1103/physreva.61.064301
    15 https://doi.org/10.1103/physreva.68.032317
    16 schema:datePublished 2004-08
    17 schema:datePublishedReg 2004-08-01
    18 schema:description Several equivalent formulations of the additivity conjecture for constrained channels, which formally is substantially stronger than the unconstrained additivity, are given. To this end a characteristic property of the optimal ensemble for such a channel is derived, generalizing the maximal distance property. It is shown that the additivity conjecture for constrained channels holds true for certain nontrivial classes of channels. After giving an algebraic formulation for Shor’s channel extension, its main asymptotic property is proved. It is then used to show that additivity for two constrained channels can be reduced to the same problem for unconstrained channels, and hence, ‘‘global’’ additivity for channels with arbitrary constraints is equivalent to additivity without constraints.
    19 schema:genre research_article
    20 schema:inLanguage en
    21 schema:isAccessibleForFree true
    22 schema:isPartOf N7b87d87868e7475c9cd666c1268bf0c5
    23 Nfbb4ccdc85bb4f8885e1dbfaf62c8b29
    24 sg:journal.1136216
    25 schema:name On Shor’s Channel Extension and Constrained Channels
    26 schema:pagination 417-430
    27 schema:productId N19560ae25ddb42eba014021fbe9e4d9d
    28 N3a01fa9933f54a3cab0e08c51cbd1c36
    29 N7550cbae7dbd4cf1bde09f5ed8432c5e
    30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046003655
    31 https://doi.org/10.1007/s00220-004-1116-5
    32 schema:sdDatePublished 2019-04-10T14:22
    33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    34 schema:sdPublisher Nef9dda3a18354ebb955775ce73e1bf2b
    35 schema:url http://link.springer.com/10.1007%2Fs00220-004-1116-5
    36 sgo:license sg:explorer/license/
    37 sgo:sdDataset articles
    38 rdf:type schema:ScholarlyArticle
    39 N0d696c49e0d74e68a8fc3ec999b377c2 rdf:first sg:person.014741114345.19
    40 rdf:rest rdf:nil
    41 N0eb18d08a6b84bfa875d2cb5af7d9fb7 rdf:first sg:person.012742037634.56
    42 rdf:rest N0d696c49e0d74e68a8fc3ec999b377c2
    43 N19560ae25ddb42eba014021fbe9e4d9d schema:name doi
    44 schema:value 10.1007/s00220-004-1116-5
    45 rdf:type schema:PropertyValue
    46 N3a01fa9933f54a3cab0e08c51cbd1c36 schema:name readcube_id
    47 schema:value db228e218246e5e6ae4cb6886248d091d08ba7cea2cca2daee274d9912cd7c5c
    48 rdf:type schema:PropertyValue
    49 N7550cbae7dbd4cf1bde09f5ed8432c5e schema:name dimensions_id
    50 schema:value pub.1046003655
    51 rdf:type schema:PropertyValue
    52 N7b87d87868e7475c9cd666c1268bf0c5 schema:issueNumber 2
    53 rdf:type schema:PublicationIssue
    54 Nef9dda3a18354ebb955775ce73e1bf2b schema:name Springer Nature - SN SciGraph project
    55 rdf:type schema:Organization
    56 Nfbb4ccdc85bb4f8885e1dbfaf62c8b29 schema:volumeNumber 249
    57 rdf:type schema:PublicationVolume
    58 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    59 schema:name Biological Sciences
    60 rdf:type schema:DefinedTerm
    61 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    62 schema:name Biochemistry and Cell Biology
    63 rdf:type schema:DefinedTerm
    64 sg:journal.1136216 schema:issn 0010-3616
    65 1432-0916
    66 schema:name Communications in Mathematical Physics
    67 rdf:type schema:Periodical
    68 sg:person.012742037634.56 schema:affiliation https://www.grid.ac/institutes/grid.426543.2
    69 schema:familyName Holevo
    70 schema:givenName A.S.
    71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012742037634.56
    72 rdf:type schema:Person
    73 sg:person.014741114345.19 schema:affiliation https://www.grid.ac/institutes/grid.18763.3b
    74 schema:familyName Shirokov
    75 schema:givenName M.E.
    76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014741114345.19
    77 rdf:type schema:Person
    78 sg:pub.10.1007/978-3-642-57997-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109710137
    79 https://doi.org/10.1007/978-3-642-57997-4
    80 rdf:type schema:CreativeWork
    81 sg:pub.10.1007/s00220-003-0919-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049631127
    82 https://doi.org/10.1007/s00220-003-0919-0
    83 rdf:type schema:CreativeWork
    84 sg:pub.10.1007/s00220-003-0981-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020153714
    85 https://doi.org/10.1007/s00220-003-0981-7
    86 rdf:type schema:CreativeWork
    87 sg:pub.10.1007/s00220-003-0987-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018626239
    88 https://doi.org/10.1007/s00220-003-0987-1
    89 rdf:type schema:CreativeWork
    90 sg:pub.10.1023/a:1009664331611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017445217
    91 https://doi.org/10.1023/a:1009664331611
    92 rdf:type schema:CreativeWork
    93 https://app.dimensions.ai/details/publication/pub.1109710137 schema:CreativeWork
    94 https://doi.org/10.1063/1.1498000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021978041
    95 rdf:type schema:CreativeWork
    96 https://doi.org/10.1063/1.527179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058104198
    97 rdf:type schema:CreativeWork
    98 https://doi.org/10.1090/conm/305/05225 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089200378
    99 rdf:type schema:CreativeWork
    100 https://doi.org/10.1103/physreva.51.2738 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060490086
    101 rdf:type schema:CreativeWork
    102 https://doi.org/10.1103/physreva.61.064301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007896501
    103 rdf:type schema:CreativeWork
    104 https://doi.org/10.1103/physreva.68.032317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013933433
    105 rdf:type schema:CreativeWork
    106 https://www.grid.ac/institutes/grid.18763.3b schema:alternateName Moscow Institute of Physics and Technology
    107 schema:name Moscow Institute of Physics and Technology, 141700, Moscow, Russia
    108 rdf:type schema:Organization
    109 https://www.grid.ac/institutes/grid.426543.2 schema:alternateName Steklov Mathematical Institute
    110 schema:name Steklov Mathematical Institute, 119991, Moscow, Russia
    111 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...