An Extension of the HarishChandra-Itzykson-Zuber Integral View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2003-04

AUTHORS

E. Brézin, S. Hikami

ABSTRACT

The HarishChandra-Itzykson-Zuber integral over the unitary group U(k) (β=2) is present in numerous problems involving Hermitian random matrices. It is well known that the result is semi-classically exact. This simple result does not extend to other symmetry groups, such as the symplectic or orthogonal groups. In this article the analysis of this integral is extended first to the symplectic group Sp(k) (β=4). There the semi-classical approximation has to be corrected by a WKB expansion. It turns out that this expansion stops after a finite number of terms ; in other words the WKB approximation is corrected by a polynomial in the appropriate variables. The analysis is based upon new solutions to the heat kernel differential equation. We have also investigated arbitrary values of the parameter β, which characterizes the symmetry group. Closed formulae are derived for arbitrary β and k=3, and also for large β and arbitrary k. More... »

PAGES

125-137

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00220-003-0804-x

DOI

http://dx.doi.org/10.1007/s00220-003-0804-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037219402


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "\u00c9cole Normale Sup\u00e9rieure de Lyon", 
          "id": "https://www.grid.ac/institutes/grid.15140.31", 
          "name": [
            "Laboratoire de Physique Th\u00e9orique, Ecole Normale Sup\u00e9rieure\n, 24 rue Lhomond 75231, Paris Cedex 05, France. E-mail: brezin@lpt.ens.fr, FR"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Br\u00e9zin", 
        "givenName": "E.", 
        "id": "sg:person.015761360357.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015761360357.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Basic Sciences, University of Tokyo, Meguro-ku, Komaba, Tokyo 153, Japan. E-mail: hikami@rishon.c.u-tokyo.ac.jp, JP"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hikami", 
        "givenName": "S.", 
        "id": "sg:person.014413765055.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014413765055.72"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2003-04", 
    "datePublishedReg": "2003-04-01", 
    "description": "The HarishChandra-Itzykson-Zuber integral over the unitary group U(k) (\u03b2=2) is present in numerous problems involving Hermitian random matrices. It is well known that the result is semi-classically exact. This simple result does not extend to other symmetry groups, such as the symplectic or orthogonal groups. In this article the analysis of this integral is extended first to the symplectic group Sp(k) (\u03b2=4). There the semi-classical approximation has to be corrected by a WKB expansion. It turns out that this expansion stops after a finite number of terms ; in other words the WKB approximation is corrected by a polynomial in the appropriate variables. The analysis is based upon new solutions to the heat kernel differential equation. We have also investigated arbitrary values of the parameter \u03b2, which characterizes the symmetry group. Closed formulae are derived for arbitrary \u03b2 and k=3, and also for large \u03b2 and arbitrary k.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00220-003-0804-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136216", 
        "issn": [
          "0010-3616", 
          "1432-0916"
        ], 
        "name": "Communications in Mathematical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "235"
      }
    ], 
    "name": "An Extension of the HarishChandra-Itzykson-Zuber Integral", 
    "pagination": "125-137", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b14cafcd630f18b70f2c53ab94c6d9bb9b234fe80321aab470cc492effcd325e"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00220-003-0804-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037219402"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00220-003-0804-x", 
      "https://app.dimensions.ai/details/publication/pub.1037219402"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000514.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00220-003-0804-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00220-003-0804-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00220-003-0804-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00220-003-0804-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00220-003-0804-x'


 

This table displays all metadata directly associated to this object as RDF triples.

71 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00220-003-0804-x schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N9ae6f57f30974f4a98b061afb29665ff
4 schema:datePublished 2003-04
5 schema:datePublishedReg 2003-04-01
6 schema:description The HarishChandra-Itzykson-Zuber integral over the unitary group U(k) (β=2) is present in numerous problems involving Hermitian random matrices. It is well known that the result is semi-classically exact. This simple result does not extend to other symmetry groups, such as the symplectic or orthogonal groups. In this article the analysis of this integral is extended first to the symplectic group Sp(k) (β=4). There the semi-classical approximation has to be corrected by a WKB expansion. It turns out that this expansion stops after a finite number of terms ; in other words the WKB approximation is corrected by a polynomial in the appropriate variables. The analysis is based upon new solutions to the heat kernel differential equation. We have also investigated arbitrary values of the parameter β, which characterizes the symmetry group. Closed formulae are derived for arbitrary β and k=3, and also for large β and arbitrary k.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree true
10 schema:isPartOf Na8b21ccf7e434922ac805ac1aa78dea1
11 Nc7116233464145f3bfee21594d344de8
12 sg:journal.1136216
13 schema:name An Extension of the HarishChandra-Itzykson-Zuber Integral
14 schema:pagination 125-137
15 schema:productId N1271cde654584da597a46b503a33ec19
16 N1bf2fb4dfba2452281a544e473166dbb
17 N6390c70b0f144b11a8fa4c9099767ca7
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037219402
19 https://doi.org/10.1007/s00220-003-0804-x
20 schema:sdDatePublished 2019-04-10T23:25
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher Nbd562478b03841f3abb2d6f22472fb4d
23 schema:url http://link.springer.com/10.1007%2Fs00220-003-0804-x
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N1271cde654584da597a46b503a33ec19 schema:name doi
28 schema:value 10.1007/s00220-003-0804-x
29 rdf:type schema:PropertyValue
30 N1bf2fb4dfba2452281a544e473166dbb schema:name readcube_id
31 schema:value b14cafcd630f18b70f2c53ab94c6d9bb9b234fe80321aab470cc492effcd325e
32 rdf:type schema:PropertyValue
33 N6390c70b0f144b11a8fa4c9099767ca7 schema:name dimensions_id
34 schema:value pub.1037219402
35 rdf:type schema:PropertyValue
36 N9ae6f57f30974f4a98b061afb29665ff rdf:first sg:person.015761360357.23
37 rdf:rest Nfac35d7432c24dc8a4bb2f5cf85dd73f
38 Na8b21ccf7e434922ac805ac1aa78dea1 schema:issueNumber 1
39 rdf:type schema:PublicationIssue
40 Nbd562478b03841f3abb2d6f22472fb4d schema:name Springer Nature - SN SciGraph project
41 rdf:type schema:Organization
42 Nc7116233464145f3bfee21594d344de8 schema:volumeNumber 235
43 rdf:type schema:PublicationVolume
44 Nfac35d7432c24dc8a4bb2f5cf85dd73f rdf:first sg:person.014413765055.72
45 rdf:rest rdf:nil
46 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
47 schema:name Mathematical Sciences
48 rdf:type schema:DefinedTerm
49 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
50 schema:name Pure Mathematics
51 rdf:type schema:DefinedTerm
52 sg:journal.1136216 schema:issn 0010-3616
53 1432-0916
54 schema:name Communications in Mathematical Physics
55 rdf:type schema:Periodical
56 sg:person.014413765055.72 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
57 schema:familyName Hikami
58 schema:givenName S.
59 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014413765055.72
60 rdf:type schema:Person
61 sg:person.015761360357.23 schema:affiliation https://www.grid.ac/institutes/grid.15140.31
62 schema:familyName Brézin
63 schema:givenName E.
64 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015761360357.23
65 rdf:type schema:Person
66 https://www.grid.ac/institutes/grid.15140.31 schema:alternateName École Normale Supérieure de Lyon
67 schema:name Laboratoire de Physique Théorique, Ecole Normale Supérieure , 24 rue Lhomond 75231, Paris Cedex 05, France. E-mail: brezin@lpt.ens.fr, FR
68 rdf:type schema:Organization
69 https://www.grid.ac/institutes/grid.26999.3d schema:alternateName University of Tokyo
70 schema:name Department of Basic Sciences, University of Tokyo, Meguro-ku, Komaba, Tokyo 153, Japan. E-mail: hikami@rishon.c.u-tokyo.ac.jp, JP
71 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...