New extraction method suitable for immunoblotting analysis of fish allergens View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-12

AUTHORS

Maki Kanamori, Hiroyuki Tanaka, Yuki Hamada, Yuji Nagashima, Kazuo Shiomi

ABSTRACT

Immunoblotting is a simple method to analyze allergens in biological samples. In previous immunoblotting studies on fish allergens, however, collagen, an important allergen next to parvalbumin (major fish allergen), has not been detected in fish muscle extracts probably due to its unique chemical properties. This study was aimed to develop an extraction method suitable for immunoblotting analysis of fish allergens including collagen as well as parvalbumin. When various extracts from the Japanese eel white muscle were analyzed by SDS–PAGE, heating of the muscle homogenate at 80 °C for 20 min was found to be the most effective method to extract collagen as well as parvalbumin. The same extraction method was also effective for the other five species of fish analyzed (rainbow trout, Japanese horse mackerel, crimson sea bream, Pacific mackerel, and Japanese flounder). Furthermore, parvalbumin and/or collagen were successfully identified as allergens in the six species of fish by immunoblotting using the heated extracts prepared by the method described above. It can be concluded that the extraction method (heating of the muscle homogenate at 80 °C for 20 min) developed in this study is useful not only for analyzing fish allergens by immunoblotting but also for preparing antigens for diagnosis of fish allergy by RAST (radioallergosorbent test). More... »

PAGES

991-997

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00217-011-1602-x

DOI

http://dx.doi.org/10.1007/s00217-011-1602-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003925310


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0602", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Ecology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tokyo University of Marine Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.412785.d", 
          "name": [
            "Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 108-8477, Minato-ku, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kanamori", 
        "givenName": "Maki", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo University of Marine Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.412785.d", 
          "name": [
            "Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 108-8477, Minato-ku, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tanaka", 
        "givenName": "Hiroyuki", 
        "id": "sg:person.014205501134.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014205501134.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nagasaki University", 
          "id": "https://www.grid.ac/institutes/grid.174567.6", 
          "name": [
            "Laboratory of Fishery Nutritional Science, Faculty of Fisheries, Nagasaki University, 852-8521, Nagasaki, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hamada", 
        "givenName": "Yuki", 
        "id": "sg:person.01316145215.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316145215.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo University of Marine Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.412785.d", 
          "name": [
            "Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 108-8477, Minato-ku, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nagashima", 
        "givenName": "Yuji", 
        "id": "sg:person.013716040242.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013716040242.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo University of Marine Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.412785.d", 
          "name": [
            "Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 108-8477, Minato-ku, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shiomi", 
        "givenName": "Kazuo", 
        "id": "sg:person.0760112765.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0760112765.27"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1159/000024111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000572005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1067/mai.2000.108499", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001483592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1081-1206(10)63290-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009677821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0091-6749(98)70195-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010624514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0091-6749(98)70195-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010624514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0278-6915(03)00074-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010638485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0278-6915(03)00074-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010638485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.bi.59.070190.004201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010979367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jaci.2005.07.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015727383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1440-1592.2003.00293.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018277852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1440-1592.2003.00293.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018277852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-3476(05)81403-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019855884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000316346", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021688500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0091-6749(92)90381-b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022161471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0076-6879(82)82059-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023679143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1081-1206(10)63386-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030401068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1081-1206(10)63099-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033587072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1271/bbb.65.285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034753501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1398-9995.2006.00966.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034983555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1398-9995.2006.00966.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034983555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-3083.1996.d01-314.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043434073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-3083.1996.d01-314.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043434073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jaci.2006.07.047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044150815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1034/j.1398-9995.57.s72.6.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049912805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-3083.1975.tb02618.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050114379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02652030903030397", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050738368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000230425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052489217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4049/jimmunol.168.9.4576", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075039355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2331/fishsci.65.943", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091102848"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-12", 
    "datePublishedReg": "2011-12-01", 
    "description": "Immunoblotting is a simple method to analyze allergens in biological samples. In previous immunoblotting studies on fish allergens, however, collagen, an important allergen next to parvalbumin (major fish allergen), has not been detected in fish muscle extracts probably due to its unique chemical properties. This study was aimed to develop an extraction method suitable for immunoblotting analysis of fish allergens including collagen as well as parvalbumin. When various extracts from the Japanese eel white muscle were analyzed by SDS\u2013PAGE, heating of the muscle homogenate at 80 \u00b0C for 20 min was found to be the most effective method to extract collagen as well as parvalbumin. The same extraction method was also effective for the other five species of fish analyzed (rainbow trout, Japanese horse mackerel, crimson sea bream, Pacific mackerel, and Japanese flounder). Furthermore, parvalbumin and/or collagen were successfully identified as allergens in the six species of fish by immunoblotting using the heated extracts prepared by the method described above. It can be concluded that the extraction method (heating of the muscle homogenate at 80 \u00b0C for 20 min) developed in this study is useful not only for analyzing fish allergens by immunoblotting but also for preparing antigens for diagnosis of fish allergy by RAST (radioallergosorbent test).", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00217-011-1602-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5974188", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1312167", 
        "issn": [
          "0044-3026", 
          "1438-2385"
        ], 
        "name": "European Food Research and Technology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "233"
      }
    ], 
    "name": "New extraction method suitable for immunoblotting analysis of fish allergens", 
    "pagination": "991-997", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "12b37b38f80a33317d330958fc9facd2a73ba2b0e46937c0592e3573e0c12f5a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00217-011-1602-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003925310"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00217-011-1602-x", 
      "https://app.dimensions.ai/details/publication/pub.1003925310"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000510.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00217-011-1602-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00217-011-1602-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00217-011-1602-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00217-011-1602-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00217-011-1602-x'


 

This table displays all metadata directly associated to this object as RDF triples.

165 TRIPLES      21 PREDICATES      51 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00217-011-1602-x schema:about anzsrc-for:06
2 anzsrc-for:0602
3 schema:author N81699e433730491e889cc561e86a76f6
4 schema:citation https://doi.org/10.1016/0076-6879(82)82059-4
5 https://doi.org/10.1016/0091-6749(92)90381-b
6 https://doi.org/10.1016/j.jaci.2005.07.033
7 https://doi.org/10.1016/j.jaci.2006.07.047
8 https://doi.org/10.1016/s0022-3476(05)81403-9
9 https://doi.org/10.1016/s0091-6749(98)70195-2
10 https://doi.org/10.1016/s0278-6915(03)00074-7
11 https://doi.org/10.1016/s1081-1206(10)63099-2
12 https://doi.org/10.1016/s1081-1206(10)63290-5
13 https://doi.org/10.1016/s1081-1206(10)63386-8
14 https://doi.org/10.1034/j.1398-9995.57.s72.6.x
15 https://doi.org/10.1046/j.1365-3083.1996.d01-314.x
16 https://doi.org/10.1046/j.1440-1592.2003.00293.x
17 https://doi.org/10.1067/mai.2000.108499
18 https://doi.org/10.1080/02652030903030397
19 https://doi.org/10.1111/j.1365-3083.1975.tb02618.x
20 https://doi.org/10.1111/j.1398-9995.2006.00966.x
21 https://doi.org/10.1146/annurev.bi.59.070190.004201
22 https://doi.org/10.1159/000024111
23 https://doi.org/10.1159/000230425
24 https://doi.org/10.1159/000316346
25 https://doi.org/10.1271/bbb.65.285
26 https://doi.org/10.2331/fishsci.65.943
27 https://doi.org/10.4049/jimmunol.168.9.4576
28 schema:datePublished 2011-12
29 schema:datePublishedReg 2011-12-01
30 schema:description Immunoblotting is a simple method to analyze allergens in biological samples. In previous immunoblotting studies on fish allergens, however, collagen, an important allergen next to parvalbumin (major fish allergen), has not been detected in fish muscle extracts probably due to its unique chemical properties. This study was aimed to develop an extraction method suitable for immunoblotting analysis of fish allergens including collagen as well as parvalbumin. When various extracts from the Japanese eel white muscle were analyzed by SDS–PAGE, heating of the muscle homogenate at 80 °C for 20 min was found to be the most effective method to extract collagen as well as parvalbumin. The same extraction method was also effective for the other five species of fish analyzed (rainbow trout, Japanese horse mackerel, crimson sea bream, Pacific mackerel, and Japanese flounder). Furthermore, parvalbumin and/or collagen were successfully identified as allergens in the six species of fish by immunoblotting using the heated extracts prepared by the method described above. It can be concluded that the extraction method (heating of the muscle homogenate at 80 °C for 20 min) developed in this study is useful not only for analyzing fish allergens by immunoblotting but also for preparing antigens for diagnosis of fish allergy by RAST (radioallergosorbent test).
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree false
34 schema:isPartOf N3bc7c14ab5b9480885b2ddf51e9225c3
35 Nc09e3089b4014a3fa88c76f25526434e
36 sg:journal.1312167
37 schema:name New extraction method suitable for immunoblotting analysis of fish allergens
38 schema:pagination 991-997
39 schema:productId N0350452928474aea975571e631c668ae
40 Nd09363effe00433bbcfe99045a35b6da
41 Ne6e552f16f554bcc97b2e210c74410da
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003925310
43 https://doi.org/10.1007/s00217-011-1602-x
44 schema:sdDatePublished 2019-04-10T20:46
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher N27b6803479e74d869ece2eb86242e4bb
47 schema:url http://link.springer.com/10.1007%2Fs00217-011-1602-x
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N0350452928474aea975571e631c668ae schema:name doi
52 schema:value 10.1007/s00217-011-1602-x
53 rdf:type schema:PropertyValue
54 N27b6803479e74d869ece2eb86242e4bb schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 N2ec2039168d1459ba22ef17873573652 rdf:first sg:person.014205501134.98
57 rdf:rest N43a089a82c784e15835554ea6d52c832
58 N3bc7c14ab5b9480885b2ddf51e9225c3 schema:volumeNumber 233
59 rdf:type schema:PublicationVolume
60 N43a089a82c784e15835554ea6d52c832 rdf:first sg:person.01316145215.47
61 rdf:rest N564bd691d0544f6fa68e75b9634fd2c4
62 N564bd691d0544f6fa68e75b9634fd2c4 rdf:first sg:person.013716040242.76
63 rdf:rest Nef9c900a468047bb9b093b192efa601b
64 N5c3fd274d9374045962b920509a650d1 schema:affiliation https://www.grid.ac/institutes/grid.412785.d
65 schema:familyName Kanamori
66 schema:givenName Maki
67 rdf:type schema:Person
68 N81699e433730491e889cc561e86a76f6 rdf:first N5c3fd274d9374045962b920509a650d1
69 rdf:rest N2ec2039168d1459ba22ef17873573652
70 Nc09e3089b4014a3fa88c76f25526434e schema:issueNumber 6
71 rdf:type schema:PublicationIssue
72 Nd09363effe00433bbcfe99045a35b6da schema:name readcube_id
73 schema:value 12b37b38f80a33317d330958fc9facd2a73ba2b0e46937c0592e3573e0c12f5a
74 rdf:type schema:PropertyValue
75 Ne6e552f16f554bcc97b2e210c74410da schema:name dimensions_id
76 schema:value pub.1003925310
77 rdf:type schema:PropertyValue
78 Nef9c900a468047bb9b093b192efa601b rdf:first sg:person.0760112765.27
79 rdf:rest rdf:nil
80 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
81 schema:name Biological Sciences
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0602 schema:inDefinedTermSet anzsrc-for:
84 schema:name Ecology
85 rdf:type schema:DefinedTerm
86 sg:grant.5974188 http://pending.schema.org/fundedItem sg:pub.10.1007/s00217-011-1602-x
87 rdf:type schema:MonetaryGrant
88 sg:journal.1312167 schema:issn 0044-3026
89 1438-2385
90 schema:name European Food Research and Technology
91 rdf:type schema:Periodical
92 sg:person.01316145215.47 schema:affiliation https://www.grid.ac/institutes/grid.174567.6
93 schema:familyName Hamada
94 schema:givenName Yuki
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316145215.47
96 rdf:type schema:Person
97 sg:person.013716040242.76 schema:affiliation https://www.grid.ac/institutes/grid.412785.d
98 schema:familyName Nagashima
99 schema:givenName Yuji
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013716040242.76
101 rdf:type schema:Person
102 sg:person.014205501134.98 schema:affiliation https://www.grid.ac/institutes/grid.412785.d
103 schema:familyName Tanaka
104 schema:givenName Hiroyuki
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014205501134.98
106 rdf:type schema:Person
107 sg:person.0760112765.27 schema:affiliation https://www.grid.ac/institutes/grid.412785.d
108 schema:familyName Shiomi
109 schema:givenName Kazuo
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0760112765.27
111 rdf:type schema:Person
112 https://doi.org/10.1016/0076-6879(82)82059-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023679143
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/0091-6749(92)90381-b schema:sameAs https://app.dimensions.ai/details/publication/pub.1022161471
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.jaci.2005.07.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015727383
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.jaci.2006.07.047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044150815
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/s0022-3476(05)81403-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019855884
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/s0091-6749(98)70195-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010624514
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/s0278-6915(03)00074-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010638485
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/s1081-1206(10)63099-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033587072
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/s1081-1206(10)63290-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009677821
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/s1081-1206(10)63386-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030401068
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1034/j.1398-9995.57.s72.6.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049912805
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1046/j.1365-3083.1996.d01-314.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043434073
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1046/j.1440-1592.2003.00293.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1018277852
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1067/mai.2000.108499 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001483592
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1080/02652030903030397 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050738368
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1111/j.1365-3083.1975.tb02618.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050114379
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1111/j.1398-9995.2006.00966.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034983555
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1146/annurev.bi.59.070190.004201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010979367
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1159/000024111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000572005
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1159/000230425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052489217
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1159/000316346 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021688500
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1271/bbb.65.285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034753501
155 rdf:type schema:CreativeWork
156 https://doi.org/10.2331/fishsci.65.943 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091102848
157 rdf:type schema:CreativeWork
158 https://doi.org/10.4049/jimmunol.168.9.4576 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075039355
159 rdf:type schema:CreativeWork
160 https://www.grid.ac/institutes/grid.174567.6 schema:alternateName Nagasaki University
161 schema:name Laboratory of Fishery Nutritional Science, Faculty of Fisheries, Nagasaki University, 852-8521, Nagasaki, Japan
162 rdf:type schema:Organization
163 https://www.grid.ac/institutes/grid.412785.d schema:alternateName Tokyo University of Marine Science and Technology
164 schema:name Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 108-8477, Minato-ku, Tokyo, Japan
165 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...