Potentiometric sensor array for the determination of lysine in feed samples using multivariate calibration methods View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2001-12

AUTHORS

N. García-Villar, J. Saurina, S. Hernández-Cassou

ABSTRACT

. A potentiometric sensor array has been developed for the determination of lysine in feed samples. The sensor array consists of a lysine biosensor and seven ion-selective electrodes for NH4+, K+, Na+, Ca2+, Mg2+, Li+, and H+, all based on all-solid-state technology. The potentiometric lysine biosensor comprises a lysine oxidase membrane assembled on an NH4+ electrode. Because the selectivity of the lysine biosensor towards other cation species is not sufficient, there is severe interference with the potentiometric response. This poor selectivity can be circumvented mathematically by analysis of the richer information contained in the multi-sensor data. The sensor array takes advantage of the cross-selectivity of lysine for each electrode, which differs from the other species and quantification of lysine in complex feed sample extracts is accomplished with multivariate calibration methods, such as partial least-squares regression. The results obtained are in a reasonable agreement with those given by the standard method for amino acid analysis. More... »

PAGES

1001-1008

References to SciGraph publications

  • 1984. Multivariate Calibration in CHEMOMETRICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s002160101042

    DOI

    http://dx.doi.org/10.1007/s002160101042

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1050592647

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/11769789


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0301", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Analytical Chemistry", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animal Feed", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biosensing Techniques", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Calibration", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Environmental Exposure", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Food Contamination", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Ion-Selective Electrodes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Lysine", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mixed Function Oxygenases", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Quaternary Ammonium Compounds", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sensitivity and Specificity", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Analytical Chemistry. University of Barcelona. Diagonal 647, 08028-Barcelona, Spain", 
              "id": "http://www.grid.ac/institutes/grid.5841.8", 
              "name": [
                "Department of Analytical Chemistry. University of Barcelona. Diagonal 647, 08028-Barcelona, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Garc\u00eda-Villar", 
            "givenName": "N.", 
            "id": "sg:person.0647556702.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647556702.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Analytical Chemistry. University of Barcelona. Diagonal 647, 08028-Barcelona, Spain", 
              "id": "http://www.grid.ac/institutes/grid.5841.8", 
              "name": [
                "Department of Analytical Chemistry. University of Barcelona. Diagonal 647, 08028-Barcelona, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Saurina", 
            "givenName": "J.", 
            "id": "sg:person.0575463416.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0575463416.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Analytical Chemistry. University of Barcelona. Diagonal 647, 08028-Barcelona, Spain", 
              "id": "http://www.grid.ac/institutes/grid.5841.8", 
              "name": [
                "Department of Analytical Chemistry. University of Barcelona. Diagonal 647, 08028-Barcelona, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hern\u00e1ndez-Cassou", 
            "givenName": "S.", 
            "id": "sg:person.01343671542.86", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343671542.86"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-94-017-1026-8_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000847385", 
              "https://doi.org/10.1007/978-94-017-1026-8_5"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2001-12", 
        "datePublishedReg": "2001-12-01", 
        "description": "Abstract. A potentiometric sensor array has been developed for the determination of lysine in feed samples. The sensor array consists of a lysine biosensor and seven ion-selective electrodes for NH4+, K+, Na+, Ca2+, Mg2+, Li+, and H+, all based on all-solid-state technology. The potentiometric lysine biosensor comprises a lysine oxidase membrane assembled on an NH4+ electrode. Because the selectivity of the lysine biosensor towards other cation species is not sufficient, there is severe interference with the potentiometric response. This poor selectivity can be circumvented mathematically by analysis of the richer information contained in the multi-sensor data. The sensor array takes advantage of the cross-selectivity of lysine for each electrode, which differs from the other species and quantification of lysine in complex feed sample extracts is accomplished with multivariate calibration methods, such as partial least-squares regression. The results obtained are in a reasonable agreement with those given by the standard method for amino acid analysis.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s002160101042", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1327771", 
            "issn": [
              "0937-0633", 
              "1432-1130"
            ], 
            "name": "Fresenius Journal of Analytical Chemistry", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "371"
          }
        ], 
        "keywords": [
          "determination of lysine", 
          "lysine biosensor", 
          "potentiometric sensor array", 
          "lysine oxidase membrane", 
          "ion-selective electrodes", 
          "multivariate calibration methods", 
          "potentiometric response", 
          "quantification of lysine", 
          "cation species", 
          "poor selectivity", 
          "sample extracts", 
          "sensor array", 
          "biosensor", 
          "feed samples", 
          "electrode", 
          "partial least-squares regression", 
          "selectivity", 
          "amino acid analysis", 
          "determination", 
          "solid-state technology", 
          "least-squares regression", 
          "NH4", 
          "lysine", 
          "acid analysis", 
          "samples", 
          "calibration method", 
          "reasonable agreement", 
          "severe interference", 
          "array", 
          "Mg2", 
          "species", 
          "method", 
          "quantification", 
          "standard methods", 
          "membrane", 
          "extracts", 
          "analysis", 
          "agreement", 
          "interference", 
          "advantages", 
          "Ca2", 
          "technology", 
          "results", 
          "rich information", 
          "data", 
          "information", 
          "response", 
          "regression", 
          "multi-sensor data", 
          "potentiometric lysine biosensor", 
          "oxidase membrane", 
          "complex feed sample extracts", 
          "feed sample extracts"
        ], 
        "name": "Potentiometric sensor array for the determination of lysine in feed samples using multivariate calibration methods", 
        "pagination": "1001-1008", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1050592647"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s002160101042"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "11769789"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s002160101042", 
          "https://app.dimensions.ai/details/publication/pub.1050592647"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:13", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_334.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s002160101042"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s002160101042'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s002160101042'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s002160101042'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s002160101042'


     

    This table displays all metadata directly associated to this object as RDF triples.

    173 TRIPLES      22 PREDICATES      91 URIs      82 LITERALS      17 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s002160101042 schema:about N6b8f6dc8910447cbb3e9ef1c1920031f
    2 N8615af641e2e457f9a83613855d23f13
    3 N95eb39a8a8d14a2f8d2875947fa52cc2
    4 Nbfd1c628aa364f4f8f465641c65a10eb
    5 Ncc191552711d43ec8d51f7c5a0a32884
    6 Nd464e0880a3f4472905d320a52a1bf05
    7 Nda896f4ecc97493dadeaabf863ad0d6b
    8 Ne883536697324bd4a0a2867f75cc0f61
    9 Nea9174c20b764ea49224e071ea12d1a4
    10 Nf6bb5b17ff524dc3a9101ce47a032c1f
    11 anzsrc-for:03
    12 anzsrc-for:0301
    13 schema:author N44604854446346f68f4c5e565ae3605a
    14 schema:citation sg:pub.10.1007/978-94-017-1026-8_5
    15 schema:datePublished 2001-12
    16 schema:datePublishedReg 2001-12-01
    17 schema:description Abstract. A potentiometric sensor array has been developed for the determination of lysine in feed samples. The sensor array consists of a lysine biosensor and seven ion-selective electrodes for NH4+, K+, Na+, Ca2+, Mg2+, Li+, and H+, all based on all-solid-state technology. The potentiometric lysine biosensor comprises a lysine oxidase membrane assembled on an NH4+ electrode. Because the selectivity of the lysine biosensor towards other cation species is not sufficient, there is severe interference with the potentiometric response. This poor selectivity can be circumvented mathematically by analysis of the richer information contained in the multi-sensor data. The sensor array takes advantage of the cross-selectivity of lysine for each electrode, which differs from the other species and quantification of lysine in complex feed sample extracts is accomplished with multivariate calibration methods, such as partial least-squares regression. The results obtained are in a reasonable agreement with those given by the standard method for amino acid analysis.
    18 schema:genre article
    19 schema:inLanguage en
    20 schema:isAccessibleForFree false
    21 schema:isPartOf N8dc7f98889894fb0b22ac6d3a3a6b91d
    22 Nd07709f616524edfa116d151d2b4a321
    23 sg:journal.1327771
    24 schema:keywords Ca2
    25 Mg2
    26 NH4
    27 acid analysis
    28 advantages
    29 agreement
    30 amino acid analysis
    31 analysis
    32 array
    33 biosensor
    34 calibration method
    35 cation species
    36 complex feed sample extracts
    37 data
    38 determination
    39 determination of lysine
    40 electrode
    41 extracts
    42 feed sample extracts
    43 feed samples
    44 information
    45 interference
    46 ion-selective electrodes
    47 least-squares regression
    48 lysine
    49 lysine biosensor
    50 lysine oxidase membrane
    51 membrane
    52 method
    53 multi-sensor data
    54 multivariate calibration methods
    55 oxidase membrane
    56 partial least-squares regression
    57 poor selectivity
    58 potentiometric lysine biosensor
    59 potentiometric response
    60 potentiometric sensor array
    61 quantification
    62 quantification of lysine
    63 reasonable agreement
    64 regression
    65 response
    66 results
    67 rich information
    68 sample extracts
    69 samples
    70 selectivity
    71 sensor array
    72 severe interference
    73 solid-state technology
    74 species
    75 standard methods
    76 technology
    77 schema:name Potentiometric sensor array for the determination of lysine in feed samples using multivariate calibration methods
    78 schema:pagination 1001-1008
    79 schema:productId N4db581ff72814fe8a29a9dabf20298a7
    80 N50391fe5cb404471bc6989b0e7ee8753
    81 Nc86ccdad752e462a9845b68f7f7a22b0
    82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050592647
    83 https://doi.org/10.1007/s002160101042
    84 schema:sdDatePublished 2021-12-01T19:13
    85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    86 schema:sdPublisher N025e0969cf13427bb3bca81064f96610
    87 schema:url https://doi.org/10.1007/s002160101042
    88 sgo:license sg:explorer/license/
    89 sgo:sdDataset articles
    90 rdf:type schema:ScholarlyArticle
    91 N025e0969cf13427bb3bca81064f96610 schema:name Springer Nature - SN SciGraph project
    92 rdf:type schema:Organization
    93 N44604854446346f68f4c5e565ae3605a rdf:first sg:person.0647556702.01
    94 rdf:rest Nea0df097524a4f2b9e65d1e60fc4fb46
    95 N4db581ff72814fe8a29a9dabf20298a7 schema:name doi
    96 schema:value 10.1007/s002160101042
    97 rdf:type schema:PropertyValue
    98 N50391fe5cb404471bc6989b0e7ee8753 schema:name dimensions_id
    99 schema:value pub.1050592647
    100 rdf:type schema:PropertyValue
    101 N6b8f6dc8910447cbb3e9ef1c1920031f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    102 schema:name Calibration
    103 rdf:type schema:DefinedTerm
    104 N8615af641e2e457f9a83613855d23f13 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    105 schema:name Biosensing Techniques
    106 rdf:type schema:DefinedTerm
    107 N8dc7f98889894fb0b22ac6d3a3a6b91d schema:issueNumber 7
    108 rdf:type schema:PublicationIssue
    109 N947b01108a9242b9a9d7e18e602176a7 rdf:first sg:person.01343671542.86
    110 rdf:rest rdf:nil
    111 N95eb39a8a8d14a2f8d2875947fa52cc2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    112 schema:name Environmental Exposure
    113 rdf:type schema:DefinedTerm
    114 Nbfd1c628aa364f4f8f465641c65a10eb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    115 schema:name Lysine
    116 rdf:type schema:DefinedTerm
    117 Nc86ccdad752e462a9845b68f7f7a22b0 schema:name pubmed_id
    118 schema:value 11769789
    119 rdf:type schema:PropertyValue
    120 Ncc191552711d43ec8d51f7c5a0a32884 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    121 schema:name Quaternary Ammonium Compounds
    122 rdf:type schema:DefinedTerm
    123 Nd07709f616524edfa116d151d2b4a321 schema:volumeNumber 371
    124 rdf:type schema:PublicationVolume
    125 Nd464e0880a3f4472905d320a52a1bf05 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    126 schema:name Mixed Function Oxygenases
    127 rdf:type schema:DefinedTerm
    128 Nda896f4ecc97493dadeaabf863ad0d6b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    129 schema:name Food Contamination
    130 rdf:type schema:DefinedTerm
    131 Ne883536697324bd4a0a2867f75cc0f61 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    132 schema:name Ion-Selective Electrodes
    133 rdf:type schema:DefinedTerm
    134 Nea0df097524a4f2b9e65d1e60fc4fb46 rdf:first sg:person.0575463416.41
    135 rdf:rest N947b01108a9242b9a9d7e18e602176a7
    136 Nea9174c20b764ea49224e071ea12d1a4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    137 schema:name Animal Feed
    138 rdf:type schema:DefinedTerm
    139 Nf6bb5b17ff524dc3a9101ce47a032c1f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    140 schema:name Sensitivity and Specificity
    141 rdf:type schema:DefinedTerm
    142 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    143 schema:name Chemical Sciences
    144 rdf:type schema:DefinedTerm
    145 anzsrc-for:0301 schema:inDefinedTermSet anzsrc-for:
    146 schema:name Analytical Chemistry
    147 rdf:type schema:DefinedTerm
    148 sg:journal.1327771 schema:issn 0937-0633
    149 1432-1130
    150 schema:name Fresenius Journal of Analytical Chemistry
    151 schema:publisher Springer Nature
    152 rdf:type schema:Periodical
    153 sg:person.01343671542.86 schema:affiliation grid-institutes:grid.5841.8
    154 schema:familyName Hernández-Cassou
    155 schema:givenName S.
    156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343671542.86
    157 rdf:type schema:Person
    158 sg:person.0575463416.41 schema:affiliation grid-institutes:grid.5841.8
    159 schema:familyName Saurina
    160 schema:givenName J.
    161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0575463416.41
    162 rdf:type schema:Person
    163 sg:person.0647556702.01 schema:affiliation grid-institutes:grid.5841.8
    164 schema:familyName García-Villar
    165 schema:givenName N.
    166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647556702.01
    167 rdf:type schema:Person
    168 sg:pub.10.1007/978-94-017-1026-8_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000847385
    169 https://doi.org/10.1007/978-94-017-1026-8_5
    170 rdf:type schema:CreativeWork
    171 grid-institutes:grid.5841.8 schema:alternateName Department of Analytical Chemistry. University of Barcelona. Diagonal 647, 08028-Barcelona, Spain
    172 schema:name Department of Analytical Chemistry. University of Barcelona. Diagonal 647, 08028-Barcelona, Spain
    173 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...