Potentiometric sensor array for the determination of lysine in feed samples using multivariate calibration methods View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2001-12

AUTHORS

N. García-Villar, J. Saurina, S. Hernández-Cassou

ABSTRACT

. A potentiometric sensor array has been developed for the determination of lysine in feed samples. The sensor array consists of a lysine biosensor and seven ion-selective electrodes for NH4+, K+, Na+, Ca2+, Mg2+, Li+, and H+, all based on all-solid-state technology. The potentiometric lysine biosensor comprises a lysine oxidase membrane assembled on an NH4+ electrode. Because the selectivity of the lysine biosensor towards other cation species is not sufficient, there is severe interference with the potentiometric response. This poor selectivity can be circumvented mathematically by analysis of the richer information contained in the multi-sensor data. The sensor array takes advantage of the cross-selectivity of lysine for each electrode, which differs from the other species and quantification of lysine in complex feed sample extracts is accomplished with multivariate calibration methods, such as partial least-squares regression. The results obtained are in a reasonable agreement with those given by the standard method for amino acid analysis. More... »

PAGES

1001-1008

References to SciGraph publications

  • 1984. Multivariate Calibration in CHEMOMETRICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s002160101042

    DOI

    http://dx.doi.org/10.1007/s002160101042

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1050592647

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/11769789


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0301", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Analytical Chemistry", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animal Feed", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biosensing Techniques", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Calibration", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Environmental Exposure", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Food Contamination", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Ion-Selective Electrodes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Lysine", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mixed Function Oxygenases", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Quaternary Ammonium Compounds", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sensitivity and Specificity", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Analytical Chemistry. University of Barcelona. Diagonal 647, 08028-Barcelona, Spain", 
              "id": "http://www.grid.ac/institutes/grid.5841.8", 
              "name": [
                "Department of Analytical Chemistry. University of Barcelona. Diagonal 647, 08028-Barcelona, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Garc\u00eda-Villar", 
            "givenName": "N.", 
            "id": "sg:person.0647556702.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647556702.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Analytical Chemistry. University of Barcelona. Diagonal 647, 08028-Barcelona, Spain", 
              "id": "http://www.grid.ac/institutes/grid.5841.8", 
              "name": [
                "Department of Analytical Chemistry. University of Barcelona. Diagonal 647, 08028-Barcelona, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Saurina", 
            "givenName": "J.", 
            "id": "sg:person.0575463416.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0575463416.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Analytical Chemistry. University of Barcelona. Diagonal 647, 08028-Barcelona, Spain", 
              "id": "http://www.grid.ac/institutes/grid.5841.8", 
              "name": [
                "Department of Analytical Chemistry. University of Barcelona. Diagonal 647, 08028-Barcelona, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hern\u00e1ndez-Cassou", 
            "givenName": "S.", 
            "id": "sg:person.01343671542.86", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343671542.86"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-94-017-1026-8_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000847385", 
              "https://doi.org/10.1007/978-94-017-1026-8_5"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2001-12", 
        "datePublishedReg": "2001-12-01", 
        "description": "Abstract. A potentiometric sensor array has been developed for the determination of lysine in feed samples. The sensor array consists of a lysine biosensor and seven ion-selective electrodes for NH4+, K+, Na+, Ca2+, Mg2+, Li+, and H+, all based on all-solid-state technology. The potentiometric lysine biosensor comprises a lysine oxidase membrane assembled on an NH4+ electrode. Because the selectivity of the lysine biosensor towards other cation species is not sufficient, there is severe interference with the potentiometric response. This poor selectivity can be circumvented mathematically by analysis of the richer information contained in the multi-sensor data. The sensor array takes advantage of the cross-selectivity of lysine for each electrode, which differs from the other species and quantification of lysine in complex feed sample extracts is accomplished with multivariate calibration methods, such as partial least-squares regression. The results obtained are in a reasonable agreement with those given by the standard method for amino acid analysis.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s002160101042", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1327771", 
            "issn": [
              "0937-0633", 
              "1432-1130"
            ], 
            "name": "Fresenius Journal of Analytical Chemistry", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "371"
          }
        ], 
        "keywords": [
          "determination of lysine", 
          "lysine biosensor", 
          "potentiometric sensor array", 
          "lysine oxidase membrane", 
          "ion-selective electrodes", 
          "multivariate calibration methods", 
          "potentiometric response", 
          "quantification of lysine", 
          "cation species", 
          "poor selectivity", 
          "sample extracts", 
          "sensor array", 
          "biosensor", 
          "feed samples", 
          "electrode", 
          "partial least-squares regression", 
          "selectivity", 
          "amino acid analysis", 
          "determination", 
          "solid-state technology", 
          "least-squares regression", 
          "NH4", 
          "lysine", 
          "acid analysis", 
          "samples", 
          "calibration method", 
          "reasonable agreement", 
          "severe interference", 
          "array", 
          "Mg2", 
          "species", 
          "method", 
          "quantification", 
          "standard methods", 
          "membrane", 
          "extracts", 
          "analysis", 
          "agreement", 
          "interference", 
          "advantages", 
          "Ca2", 
          "technology", 
          "results", 
          "rich information", 
          "data", 
          "information", 
          "response", 
          "regression", 
          "multi-sensor data", 
          "potentiometric lysine biosensor", 
          "oxidase membrane", 
          "complex feed sample extracts", 
          "feed sample extracts"
        ], 
        "name": "Potentiometric sensor array for the determination of lysine in feed samples using multivariate calibration methods", 
        "pagination": "1001-1008", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1050592647"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s002160101042"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "11769789"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s002160101042", 
          "https://app.dimensions.ai/details/publication/pub.1050592647"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:13", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_334.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s002160101042"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s002160101042'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s002160101042'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s002160101042'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s002160101042'


     

    This table displays all metadata directly associated to this object as RDF triples.

    173 TRIPLES      22 PREDICATES      91 URIs      82 LITERALS      17 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s002160101042 schema:about N0adbb6bfbba14c62ae1ea56c165507a1
    2 N1e503e76a76342b48b19b000e0b702c5
    3 N48428ee5365a4c9cb04939a81caf85f3
    4 N54e39888b3224d598e3ccd5b20436185
    5 N5743a0e9acc048e18c5f5b570bdfeda3
    6 N755144b3e0354c6eb54f9c0525b93823
    7 Na16162b539164fa0a4ac9f502ddd8242
    8 Nc4130bbb30cf4135a76d74e0714de805
    9 Nc70d134c48e049068cf06e91681c9737
    10 Nc76c770f83b840c58602de42221f9a56
    11 anzsrc-for:03
    12 anzsrc-for:0301
    13 schema:author N5ee0b58c20d14bf98eadbba232f872c0
    14 schema:citation sg:pub.10.1007/978-94-017-1026-8_5
    15 schema:datePublished 2001-12
    16 schema:datePublishedReg 2001-12-01
    17 schema:description Abstract. A potentiometric sensor array has been developed for the determination of lysine in feed samples. The sensor array consists of a lysine biosensor and seven ion-selective electrodes for NH4+, K+, Na+, Ca2+, Mg2+, Li+, and H+, all based on all-solid-state technology. The potentiometric lysine biosensor comprises a lysine oxidase membrane assembled on an NH4+ electrode. Because the selectivity of the lysine biosensor towards other cation species is not sufficient, there is severe interference with the potentiometric response. This poor selectivity can be circumvented mathematically by analysis of the richer information contained in the multi-sensor data. The sensor array takes advantage of the cross-selectivity of lysine for each electrode, which differs from the other species and quantification of lysine in complex feed sample extracts is accomplished with multivariate calibration methods, such as partial least-squares regression. The results obtained are in a reasonable agreement with those given by the standard method for amino acid analysis.
    18 schema:genre article
    19 schema:inLanguage en
    20 schema:isAccessibleForFree false
    21 schema:isPartOf N1196eb2ddfa947cba08f4ccfcca5d4c4
    22 Ne1e672637f5541bf81e725cc92158c7c
    23 sg:journal.1327771
    24 schema:keywords Ca2
    25 Mg2
    26 NH4
    27 acid analysis
    28 advantages
    29 agreement
    30 amino acid analysis
    31 analysis
    32 array
    33 biosensor
    34 calibration method
    35 cation species
    36 complex feed sample extracts
    37 data
    38 determination
    39 determination of lysine
    40 electrode
    41 extracts
    42 feed sample extracts
    43 feed samples
    44 information
    45 interference
    46 ion-selective electrodes
    47 least-squares regression
    48 lysine
    49 lysine biosensor
    50 lysine oxidase membrane
    51 membrane
    52 method
    53 multi-sensor data
    54 multivariate calibration methods
    55 oxidase membrane
    56 partial least-squares regression
    57 poor selectivity
    58 potentiometric lysine biosensor
    59 potentiometric response
    60 potentiometric sensor array
    61 quantification
    62 quantification of lysine
    63 reasonable agreement
    64 regression
    65 response
    66 results
    67 rich information
    68 sample extracts
    69 samples
    70 selectivity
    71 sensor array
    72 severe interference
    73 solid-state technology
    74 species
    75 standard methods
    76 technology
    77 schema:name Potentiometric sensor array for the determination of lysine in feed samples using multivariate calibration methods
    78 schema:pagination 1001-1008
    79 schema:productId N04620f2c3e7541e0b922ea30f3f2ba2d
    80 N90a93ecf2aaa4104857dad4ba2b755cd
    81 N9258373880b24f99a02d991f77b6251d
    82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050592647
    83 https://doi.org/10.1007/s002160101042
    84 schema:sdDatePublished 2021-12-01T19:13
    85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    86 schema:sdPublisher Nc8fe20a9d9e946cc856e423cbb8ab0cb
    87 schema:url https://doi.org/10.1007/s002160101042
    88 sgo:license sg:explorer/license/
    89 sgo:sdDataset articles
    90 rdf:type schema:ScholarlyArticle
    91 N04620f2c3e7541e0b922ea30f3f2ba2d schema:name dimensions_id
    92 schema:value pub.1050592647
    93 rdf:type schema:PropertyValue
    94 N0adbb6bfbba14c62ae1ea56c165507a1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    95 schema:name Ion-Selective Electrodes
    96 rdf:type schema:DefinedTerm
    97 N1196eb2ddfa947cba08f4ccfcca5d4c4 schema:volumeNumber 371
    98 rdf:type schema:PublicationVolume
    99 N1e503e76a76342b48b19b000e0b702c5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    100 schema:name Quaternary Ammonium Compounds
    101 rdf:type schema:DefinedTerm
    102 N48428ee5365a4c9cb04939a81caf85f3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    103 schema:name Environmental Exposure
    104 rdf:type schema:DefinedTerm
    105 N54e39888b3224d598e3ccd5b20436185 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    106 schema:name Lysine
    107 rdf:type schema:DefinedTerm
    108 N5743a0e9acc048e18c5f5b570bdfeda3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    109 schema:name Mixed Function Oxygenases
    110 rdf:type schema:DefinedTerm
    111 N5ee0b58c20d14bf98eadbba232f872c0 rdf:first sg:person.0647556702.01
    112 rdf:rest N9499cfac06014820b540aa6ab431b958
    113 N755144b3e0354c6eb54f9c0525b93823 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    114 schema:name Food Contamination
    115 rdf:type schema:DefinedTerm
    116 N7fb2a4af89eb4ef29e83cc498000e77f rdf:first sg:person.01343671542.86
    117 rdf:rest rdf:nil
    118 N90a93ecf2aaa4104857dad4ba2b755cd schema:name pubmed_id
    119 schema:value 11769789
    120 rdf:type schema:PropertyValue
    121 N9258373880b24f99a02d991f77b6251d schema:name doi
    122 schema:value 10.1007/s002160101042
    123 rdf:type schema:PropertyValue
    124 N9499cfac06014820b540aa6ab431b958 rdf:first sg:person.0575463416.41
    125 rdf:rest N7fb2a4af89eb4ef29e83cc498000e77f
    126 Na16162b539164fa0a4ac9f502ddd8242 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    127 schema:name Biosensing Techniques
    128 rdf:type schema:DefinedTerm
    129 Nc4130bbb30cf4135a76d74e0714de805 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    130 schema:name Calibration
    131 rdf:type schema:DefinedTerm
    132 Nc70d134c48e049068cf06e91681c9737 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    133 schema:name Sensitivity and Specificity
    134 rdf:type schema:DefinedTerm
    135 Nc76c770f83b840c58602de42221f9a56 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    136 schema:name Animal Feed
    137 rdf:type schema:DefinedTerm
    138 Nc8fe20a9d9e946cc856e423cbb8ab0cb schema:name Springer Nature - SN SciGraph project
    139 rdf:type schema:Organization
    140 Ne1e672637f5541bf81e725cc92158c7c schema:issueNumber 7
    141 rdf:type schema:PublicationIssue
    142 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    143 schema:name Chemical Sciences
    144 rdf:type schema:DefinedTerm
    145 anzsrc-for:0301 schema:inDefinedTermSet anzsrc-for:
    146 schema:name Analytical Chemistry
    147 rdf:type schema:DefinedTerm
    148 sg:journal.1327771 schema:issn 0937-0633
    149 1432-1130
    150 schema:name Fresenius Journal of Analytical Chemistry
    151 schema:publisher Springer Nature
    152 rdf:type schema:Periodical
    153 sg:person.01343671542.86 schema:affiliation grid-institutes:grid.5841.8
    154 schema:familyName Hernández-Cassou
    155 schema:givenName S.
    156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343671542.86
    157 rdf:type schema:Person
    158 sg:person.0575463416.41 schema:affiliation grid-institutes:grid.5841.8
    159 schema:familyName Saurina
    160 schema:givenName J.
    161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0575463416.41
    162 rdf:type schema:Person
    163 sg:person.0647556702.01 schema:affiliation grid-institutes:grid.5841.8
    164 schema:familyName García-Villar
    165 schema:givenName N.
    166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647556702.01
    167 rdf:type schema:Person
    168 sg:pub.10.1007/978-94-017-1026-8_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000847385
    169 https://doi.org/10.1007/978-94-017-1026-8_5
    170 rdf:type schema:CreativeWork
    171 grid-institutes:grid.5841.8 schema:alternateName Department of Analytical Chemistry. University of Barcelona. Diagonal 647, 08028-Barcelona, Spain
    172 schema:name Department of Analytical Chemistry. University of Barcelona. Diagonal 647, 08028-Barcelona, Spain
    173 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...