Lab-on-a-chip sample preparation using laminar fluid diffusion interfaces – computational fluid dynamics model results and fluidic verification experiments View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2001-09

AUTHORS

Bernhard H. Weigl, Ron L. Bardell, Natasa Kesler, Christopher J. Morris

ABSTRACT

Microfluidic structures for the generation of laminar fluid diffusion interfaces (LFDIs) for sample preparation and analysis are discussed. Experimental data and the results of fluid modeling are shown. LFDIs are generated when two or more streams flow in parallel in a single microfluidic structure without any mixing of the fluids other than by diffusion of particles across the diffusion interface. It has been shown that such structures can be used for diffusion-based separation and detection applications. The method has been applied to DNA desalting, the extraction of small proteins from whole blood samples, and the detection of various constituents in whole blood, among other examples. In this paper the design and manufacture of self-contained microfluidic cartridges for the extraction of small molecules from a mixture of small and large molecules by diffusion is demonstrated. The cards are operated without any external instrumentation, and use hydrostatic pressure as the driving force. The performance of the cartridges is illustrated by separating fluorescein from a mixture of fluorescein and dextran of molecular weight 2 x 10(6). In a single pass, 98.6% of dextran was retained in the product whereas 43.1% of fluorescein was removed. The method is adjustable for different separation requirements, and computational fluid dynamics (CFD) models are shown that demonstrate the tuning of various microfluidic parameters to optimize separation performance. Other applications of LFDIs for establishment of stable concentration gradients, and the exposure of chemical constituents or biological particles to these concentration gradients are shown qualitatively. Microfluidic chips have been designed for high-throughput screening applications that enable the uniform and controlled exposure of cells to lysing agents, thus enabling the differentiation of cells by their sensitivity to specific agents in an on-chip cytometer coupled directly to the lysing structure. More... »

PAGES

97-105

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s002160100997

DOI

http://dx.doi.org/10.1007/s002160100997

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1036408809

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/11678205


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chemistry Techniques, Analytical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Dextrans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diffusion", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Equipment Design", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fluorescein", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microchemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Chemical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Weight", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Rheology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Viscosity", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Sony Corporation (United States)", 
          "id": "https://www.grid.ac/institutes/grid.421353.2", 
          "name": [
            "Micronics Inc., 8463 154th Avenue, Redmond, WA 98052, USA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weigl", 
        "givenName": "Bernhard H.", 
        "id": "sg:person.016570710205.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016570710205.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sony Corporation (United States)", 
          "id": "https://www.grid.ac/institutes/grid.421353.2", 
          "name": [
            "Micronics Inc., 8463 154th Avenue, Redmond, WA 98052, USA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bardell", 
        "givenName": "Ron L.", 
        "id": "sg:person.012123007341.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012123007341.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sony Corporation (United States)", 
          "id": "https://www.grid.ac/institutes/grid.421353.2", 
          "name": [
            "Micronics Inc., 8463 154th Avenue, Redmond, WA 98052, USA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kesler", 
        "givenName": "Natasa", 
        "id": "sg:person.01250361231.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250361231.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sony Corporation (United States)", 
          "id": "https://www.grid.ac/institutes/grid.421353.2", 
          "name": [
            "Micronics Inc., 8463 154th Avenue, Redmond, WA 98052, USA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Morris", 
        "givenName": "Christopher J.", 
        "id": "sg:person.01316474431.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316474431.37"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2001-09", 
    "datePublishedReg": "2001-09-01", 
    "description": "Microfluidic structures for the generation of laminar fluid diffusion interfaces (LFDIs) for sample preparation and analysis are discussed. Experimental data and the results of fluid modeling are shown. LFDIs are generated when two or more streams flow in parallel in a single microfluidic structure without any mixing of the fluids other than by diffusion of particles across the diffusion interface. It has been shown that such structures can be used for diffusion-based separation and detection applications. The method has been applied to DNA desalting, the extraction of small proteins from whole blood samples, and the detection of various constituents in whole blood, among other examples. In this paper the design and manufacture of self-contained microfluidic cartridges for the extraction of small molecules from a mixture of small and large molecules by diffusion is demonstrated. The cards are operated without any external instrumentation, and use hydrostatic pressure as the driving force. The performance of the cartridges is illustrated by separating fluorescein from a mixture of fluorescein and dextran of molecular weight 2 x 10(6). In a single pass, 98.6% of dextran was retained in the product whereas 43.1% of fluorescein was removed. The method is adjustable for different separation requirements, and computational fluid dynamics (CFD) models are shown that demonstrate the tuning of various microfluidic parameters to optimize separation performance. Other applications of LFDIs for establishment of stable concentration gradients, and the exposure of chemical constituents or biological particles to these concentration gradients are shown qualitatively. Microfluidic chips have been designed for high-throughput screening applications that enable the uniform and controlled exposure of cells to lysing agents, thus enabling the differentiation of cells by their sensitivity to specific agents in an on-chip cytometer coupled directly to the lysing structure.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s002160100997", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1327771", 
        "issn": [
          "0937-0633", 
          "1432-1130"
        ], 
        "name": "Journal of Analytical Chemistry", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "371"
      }
    ], 
    "name": "Lab-on-a-chip sample preparation using laminar fluid diffusion interfaces \u2013 computational fluid dynamics model results and fluidic verification experiments", 
    "pagination": "97-105", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ad7040dddf139d4dedcc0a6bc639e02be450710a1e892d3dc77a28c456e871ed"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "11678205"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9114077"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s002160100997"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1036408809"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s002160100997", 
      "https://app.dimensions.ai/details/publication/pub.1036408809"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000514.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs002160100997"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s002160100997'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s002160100997'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s002160100997'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s002160100997'


 

This table displays all metadata directly associated to this object as RDF triples.

130 TRIPLES      20 PREDICATES      39 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s002160100997 schema:about N09b35693a28e44668c8e3c983e97d1e4
2 N155a39605b1444718b6ab792f431b77c
3 N428085e00fc145f3a1cfddf62d711e68
4 N436d920429e84b2997facb682ee872e6
5 N9f1962041d25418b991f7ab6f753f493
6 Na5f24bc33d9445dd9686bbbc594e423c
7 Nc75eb6d9b8a042ac9aaf6515f8b06790
8 Ne1058fe88e4e40d48da97b336f8fda63
9 Ne26d6c2074a24f19b3ec938335308aa4
10 Nf5136f3728404a3789c22209a77f3ed8
11 anzsrc-for:09
12 anzsrc-for:0915
13 schema:author N490395db902c494792137bca75bb08d5
14 schema:datePublished 2001-09
15 schema:datePublishedReg 2001-09-01
16 schema:description Microfluidic structures for the generation of laminar fluid diffusion interfaces (LFDIs) for sample preparation and analysis are discussed. Experimental data and the results of fluid modeling are shown. LFDIs are generated when two or more streams flow in parallel in a single microfluidic structure without any mixing of the fluids other than by diffusion of particles across the diffusion interface. It has been shown that such structures can be used for diffusion-based separation and detection applications. The method has been applied to DNA desalting, the extraction of small proteins from whole blood samples, and the detection of various constituents in whole blood, among other examples. In this paper the design and manufacture of self-contained microfluidic cartridges for the extraction of small molecules from a mixture of small and large molecules by diffusion is demonstrated. The cards are operated without any external instrumentation, and use hydrostatic pressure as the driving force. The performance of the cartridges is illustrated by separating fluorescein from a mixture of fluorescein and dextran of molecular weight 2 x 10(6). In a single pass, 98.6% of dextran was retained in the product whereas 43.1% of fluorescein was removed. The method is adjustable for different separation requirements, and computational fluid dynamics (CFD) models are shown that demonstrate the tuning of various microfluidic parameters to optimize separation performance. Other applications of LFDIs for establishment of stable concentration gradients, and the exposure of chemical constituents or biological particles to these concentration gradients are shown qualitatively. Microfluidic chips have been designed for high-throughput screening applications that enable the uniform and controlled exposure of cells to lysing agents, thus enabling the differentiation of cells by their sensitivity to specific agents in an on-chip cytometer coupled directly to the lysing structure.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N90a87065ad2448c2b731cd7f6032c4ee
21 Nae4ea63f1e44410ea1fd0afbb86bcd15
22 sg:journal.1327771
23 schema:name Lab-on-a-chip sample preparation using laminar fluid diffusion interfaces – computational fluid dynamics model results and fluidic verification experiments
24 schema:pagination 97-105
25 schema:productId N189ddbf5592b4fdea6115109abfe9eb0
26 N42c90a7ba8984a7ab4570f64b3692ba2
27 Nab09a5a09c4d414596210511fee4e038
28 Nc6a1cf7f3dc34f9caa00c7d74997acb3
29 Ndd06607eed10485c9ae8d6b4213dc063
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036408809
31 https://doi.org/10.1007/s002160100997
32 schema:sdDatePublished 2019-04-10T18:21
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher Ncff68e673bb34e669a95d00e1866370d
35 schema:url http://link.springer.com/10.1007%2Fs002160100997
36 sgo:license sg:explorer/license/
37 sgo:sdDataset articles
38 rdf:type schema:ScholarlyArticle
39 N09b35693a28e44668c8e3c983e97d1e4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
40 schema:name Viscosity
41 rdf:type schema:DefinedTerm
42 N13b746dc47e1404481787cf3c2bf922f rdf:first sg:person.01250361231.35
43 rdf:rest N2ffd64c17b444937926598fe001b2728
44 N155a39605b1444718b6ab792f431b77c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
45 schema:name Microchemistry
46 rdf:type schema:DefinedTerm
47 N189ddbf5592b4fdea6115109abfe9eb0 schema:name doi
48 schema:value 10.1007/s002160100997
49 rdf:type schema:PropertyValue
50 N2ffd64c17b444937926598fe001b2728 rdf:first sg:person.01316474431.37
51 rdf:rest rdf:nil
52 N428085e00fc145f3a1cfddf62d711e68 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
53 schema:name Dextrans
54 rdf:type schema:DefinedTerm
55 N42c90a7ba8984a7ab4570f64b3692ba2 schema:name dimensions_id
56 schema:value pub.1036408809
57 rdf:type schema:PropertyValue
58 N4335fbb26b7544daba59e7e68ad20d25 rdf:first sg:person.012123007341.49
59 rdf:rest N13b746dc47e1404481787cf3c2bf922f
60 N436d920429e84b2997facb682ee872e6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
61 schema:name Models, Chemical
62 rdf:type schema:DefinedTerm
63 N490395db902c494792137bca75bb08d5 rdf:first sg:person.016570710205.01
64 rdf:rest N4335fbb26b7544daba59e7e68ad20d25
65 N90a87065ad2448c2b731cd7f6032c4ee schema:issueNumber 2
66 rdf:type schema:PublicationIssue
67 N9f1962041d25418b991f7ab6f753f493 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Molecular Weight
69 rdf:type schema:DefinedTerm
70 Na5f24bc33d9445dd9686bbbc594e423c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Equipment Design
72 rdf:type schema:DefinedTerm
73 Nab09a5a09c4d414596210511fee4e038 schema:name readcube_id
74 schema:value ad7040dddf139d4dedcc0a6bc639e02be450710a1e892d3dc77a28c456e871ed
75 rdf:type schema:PropertyValue
76 Nae4ea63f1e44410ea1fd0afbb86bcd15 schema:volumeNumber 371
77 rdf:type schema:PublicationVolume
78 Nc6a1cf7f3dc34f9caa00c7d74997acb3 schema:name pubmed_id
79 schema:value 11678205
80 rdf:type schema:PropertyValue
81 Nc75eb6d9b8a042ac9aaf6515f8b06790 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Rheology
83 rdf:type schema:DefinedTerm
84 Ncff68e673bb34e669a95d00e1866370d schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 Ndd06607eed10485c9ae8d6b4213dc063 schema:name nlm_unique_id
87 schema:value 9114077
88 rdf:type schema:PropertyValue
89 Ne1058fe88e4e40d48da97b336f8fda63 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Chemistry Techniques, Analytical
91 rdf:type schema:DefinedTerm
92 Ne26d6c2074a24f19b3ec938335308aa4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Diffusion
94 rdf:type schema:DefinedTerm
95 Nf5136f3728404a3789c22209a77f3ed8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Fluorescein
97 rdf:type schema:DefinedTerm
98 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
99 schema:name Engineering
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
102 schema:name Interdisciplinary Engineering
103 rdf:type schema:DefinedTerm
104 sg:journal.1327771 schema:issn 0937-0633
105 1432-1130
106 schema:name Journal of Analytical Chemistry
107 rdf:type schema:Periodical
108 sg:person.012123007341.49 schema:affiliation https://www.grid.ac/institutes/grid.421353.2
109 schema:familyName Bardell
110 schema:givenName Ron L.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012123007341.49
112 rdf:type schema:Person
113 sg:person.01250361231.35 schema:affiliation https://www.grid.ac/institutes/grid.421353.2
114 schema:familyName Kesler
115 schema:givenName Natasa
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250361231.35
117 rdf:type schema:Person
118 sg:person.01316474431.37 schema:affiliation https://www.grid.ac/institutes/grid.421353.2
119 schema:familyName Morris
120 schema:givenName Christopher J.
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316474431.37
122 rdf:type schema:Person
123 sg:person.016570710205.01 schema:affiliation https://www.grid.ac/institutes/grid.421353.2
124 schema:familyName Weigl
125 schema:givenName Bernhard H.
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016570710205.01
127 rdf:type schema:Person
128 https://www.grid.ac/institutes/grid.421353.2 schema:alternateName Sony Corporation (United States)
129 schema:name Micronics Inc., 8463 154th Avenue, Redmond, WA 98052, USA, USA
130 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...