GC–QTOFMS with a low-energy electron ionization source for advancing isotopologue analysis in 13C-based metabolic flux analysis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

Teresa Mairinger, Jennifer Sanderson, Stephan Hann

ABSTRACT

For the study of different levels of (intra)cellular regulation and condition-dependent insight into metabolic activities, fluxomics experiments based on stable isotope tracer experiments using 13C have become a well-established approach. The experimentally obtained non-naturally distributed 13C labeling patterns of metabolite pools can be measured by mass spectrometric detection with front-end separation and can be consequently incorporated into biochemical network models. Here, despite a tedious derivatization step, gas chromatographic separation of polar metabolites is favorable because of the wide coverage range and high isomer separation efficiency. However, the typically employed electron ionization energy of 70 eV leads to significant fragmentation and consequently only low-abundant ions with an intact carbon backbone. Since these ions are considered a prerequisite for the analysis of the non-naturally distributed labeling patterns and further integration into modeling strategies, a softer ionization technique is needed. In the present work, a novel low energy electron ionization source is optimized for the analysis of primary metabolites and compared with a chemical ionization approach in terms of trueness, precision, and sensitivity. More... »

PAGES

1-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00216-019-01590-y

DOI

http://dx.doi.org/10.1007/s00216-019-01590-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112305106

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30796486


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Swiss Federal Institute of Aquatic Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.418656.8", 
          "name": [
            "Department of Chemistry, University of Natural Resources and Life Sciences\u2014BOKU Vienna, Muthgasse 18, 1190, Vienna, Austria", 
            "EAWAG: Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, 8600, D\u00fcbendorf, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mairinger", 
        "givenName": "Teresa", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Agilent Technologies (United States)", 
          "id": "https://www.grid.ac/institutes/grid.422638.9", 
          "name": [
            "Agilent Technologies Inc, 5301 Stevens Creek Boulevard, 95051, Santa Clara, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sanderson", 
        "givenName": "Jennifer", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Natural Resources and Life Sciences", 
          "id": "https://www.grid.ac/institutes/grid.5173.0", 
          "name": [
            "Department of Chemistry, University of Natural Resources and Life Sciences\u2014BOKU Vienna, Muthgasse 18, 1190, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hann", 
        "givenName": "Stephan", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00253-016-7363-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000353794", 
          "https://doi.org/10.1007/s00253-016-7363-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00253-016-7363-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000353794", 
          "https://doi.org/10.1007/s00253-016-7363-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jchromb.2011.10.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007294566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/mben.2001.0187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009229172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0021-9673(97)01051-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012415698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jxb/eri069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013571412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb4100109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021019547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb4100109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021019547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11306-010-0254-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025054117", 
          "https://doi.org/10.1007/s11306-010-0254-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/oms.1210211003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030434262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/oms.1210211003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030434262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bit.10393", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035769242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bts127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036035355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jchromb.2009.07.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036485383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00216-015-8521-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037967483", 
          "https://doi.org/10.1007/s00216-015-8521-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.copbio.2013.02.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039718227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac051683+", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054997535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac051683+", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054997535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac502490g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055019605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac9019522", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055071766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac9019522", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055071766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac991142i", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055077469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac991142i", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055077469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.analchem.5b03173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055079044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.analchem.5b03887", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055079245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.analchem.6b03947", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055080691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btv514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059414474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1255/ejms.39", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064520102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1255/ejms.39", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064520102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00216-016-0174-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074216199", 
          "https://doi.org/10.1007/s00216-016-0174-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00216-016-0174-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074216199", 
          "https://doi.org/10.1007/s00216-016-0174-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00216-017-0339-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084517394", 
          "https://doi.org/10.1007/s00216-017-0339-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00216-017-0339-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084517394", 
          "https://doi.org/10.1007/s00216-017-0339-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.analchem.7b03886", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099724818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00216-018-1017-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103251910", 
          "https://doi.org/10.1007/s00216-018-1017-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-018-07430-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109958288", 
          "https://doi.org/10.1038/s41467-018-07430-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-018-07430-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109958288", 
          "https://doi.org/10.1038/s41467-018-07430-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-018-07430-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109958288", 
          "https://doi.org/10.1038/s41467-018-07430-4"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "For the study of different levels of (intra)cellular regulation and condition-dependent insight into metabolic activities, fluxomics experiments based on stable isotope tracer experiments using 13C have become a well-established approach. The experimentally obtained non-naturally distributed 13C labeling patterns of metabolite pools can be measured by mass spectrometric detection with front-end separation and can be consequently incorporated into biochemical network models. Here, despite a tedious derivatization step, gas chromatographic separation of polar metabolites is favorable because of the wide coverage range and high isomer separation efficiency. However, the typically employed\u00a0electron ionization energy of 70 eV leads to significant fragmentation and consequently only low-abundant ions with an intact carbon backbone. Since these ions are considered a prerequisite for the analysis of the non-naturally distributed labeling patterns and further integration into modeling strategies, a softer ionization technique is needed. In the present work, a novel low\u00a0energy electron ionization source is optimized for the analysis of primary metabolites and compared with a chemical ionization approach in terms of trueness, precision, and sensitivity.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00216-019-01590-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1357342", 
        "issn": [
          "1618-2642", 
          "1618-2650"
        ], 
        "name": "Analytical and Bioanalytical Chemistry", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "411"
      }
    ], 
    "name": "GC\u2013QTOFMS with a low-energy electron ionization source for advancing isotopologue analysis in 13C-based metabolic flux analysis", 
    "pagination": "1-8", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e833a1bda518da174b9ee057634e3c2c3f37197a6c04745ae7ec94d8b1348f6c"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30796486"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101134327"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00216-019-01590-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112305106"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00216-019-01590-y", 
      "https://app.dimensions.ai/details/publication/pub.1112305106"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000372_0000000372/records_117123_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00216-019-01590-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00216-019-01590-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00216-019-01590-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00216-019-01590-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00216-019-01590-y'


 

This table displays all metadata directly associated to this object as RDF triples.

175 TRIPLES      21 PREDICATES      56 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00216-019-01590-y schema:about anzsrc-for:09
2 anzsrc-for:0904
3 schema:author Nfa1dca8adfca488f99f40d4c8bc48812
4 schema:citation sg:pub.10.1007/s00216-015-8521-9
5 sg:pub.10.1007/s00216-016-0174-9
6 sg:pub.10.1007/s00216-017-0339-1
7 sg:pub.10.1007/s00216-018-1017-7
8 sg:pub.10.1007/s00253-016-7363-5
9 sg:pub.10.1007/s11306-010-0254-3
10 sg:pub.10.1038/s41467-018-07430-4
11 https://doi.org/10.1002/bit.10393
12 https://doi.org/10.1002/oms.1210211003
13 https://doi.org/10.1006/mben.2001.0187
14 https://doi.org/10.1016/j.copbio.2013.02.003
15 https://doi.org/10.1016/j.jchromb.2009.07.019
16 https://doi.org/10.1016/j.jchromb.2011.10.036
17 https://doi.org/10.1016/s0021-9673(97)01051-0
18 https://doi.org/10.1021/ac051683+
19 https://doi.org/10.1021/ac502490g
20 https://doi.org/10.1021/ac9019522
21 https://doi.org/10.1021/ac991142i
22 https://doi.org/10.1021/acs.analchem.5b03173
23 https://doi.org/10.1021/acs.analchem.5b03887
24 https://doi.org/10.1021/acs.analchem.6b03947
25 https://doi.org/10.1021/acs.analchem.7b03886
26 https://doi.org/10.1038/msb4100109
27 https://doi.org/10.1093/bioinformatics/bts127
28 https://doi.org/10.1093/bioinformatics/btv514
29 https://doi.org/10.1093/jxb/eri069
30 https://doi.org/10.1255/ejms.39
31 schema:datePublished 2019-03
32 schema:datePublishedReg 2019-03-01
33 schema:description For the study of different levels of (intra)cellular regulation and condition-dependent insight into metabolic activities, fluxomics experiments based on stable isotope tracer experiments using <sup>13</sup>C have become a well-established approach. The experimentally obtained non-naturally distributed <sup>13</sup>C labeling patterns of metabolite pools can be measured by mass spectrometric detection with front-end separation and can be consequently incorporated into biochemical network models. Here, despite a tedious derivatization step, gas chromatographic separation of polar metabolites is favorable because of the wide coverage range and high isomer separation efficiency. However, the typically employed electron ionization energy of 70 eV leads to significant fragmentation and consequently only low-abundant ions with an intact carbon backbone. Since these ions are considered a prerequisite for the analysis of the non-naturally distributed labeling patterns and further integration into modeling strategies, a softer ionization technique is needed. In the present work, a novel low energy electron ionization source is optimized for the analysis of primary metabolites and compared with a chemical ionization approach in terms of trueness, precision, and sensitivity.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree false
37 schema:isPartOf N380560c88141484eb21216be74586750
38 Nb1f9a670e8644d4b845823f99908b995
39 sg:journal.1357342
40 schema:name GC–QTOFMS with a low-energy electron ionization source for advancing isotopologue analysis in 13C-based metabolic flux analysis
41 schema:pagination 1-8
42 schema:productId N07dcc589febc4a678996e341fd339d5f
43 N583f2d7451d0421492d5f0c700eaaee2
44 Nbe41b8985e504051acd306896d386ae8
45 Nd532c69737f24328b9828d505deaffb6
46 Nfc4fb27766d448c2a1b0fb2609a6fe68
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112305106
48 https://doi.org/10.1007/s00216-019-01590-y
49 schema:sdDatePublished 2019-04-11T14:20
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher N4f1db24f01cd4d5bb146ba3956584bdf
52 schema:url https://link.springer.com/10.1007%2Fs00216-019-01590-y
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N07dcc589febc4a678996e341fd339d5f schema:name dimensions_id
57 schema:value pub.1112305106
58 rdf:type schema:PropertyValue
59 N336e031d2d6a4e0e988b4c08709413f1 rdf:first N66e4c402e4a244f690ed3f92ef0ad5fb
60 rdf:rest rdf:nil
61 N380560c88141484eb21216be74586750 schema:issueNumber 8
62 rdf:type schema:PublicationIssue
63 N4f1db24f01cd4d5bb146ba3956584bdf schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 N583f2d7451d0421492d5f0c700eaaee2 schema:name nlm_unique_id
66 schema:value 101134327
67 rdf:type schema:PropertyValue
68 N66e4c402e4a244f690ed3f92ef0ad5fb schema:affiliation https://www.grid.ac/institutes/grid.5173.0
69 schema:familyName Hann
70 schema:givenName Stephan
71 rdf:type schema:Person
72 Nb1f9a670e8644d4b845823f99908b995 schema:volumeNumber 411
73 rdf:type schema:PublicationVolume
74 Nbe41b8985e504051acd306896d386ae8 schema:name doi
75 schema:value 10.1007/s00216-019-01590-y
76 rdf:type schema:PropertyValue
77 Nc6f53495c5e442ffbfc78ade8e2eb645 schema:affiliation https://www.grid.ac/institutes/grid.422638.9
78 schema:familyName Sanderson
79 schema:givenName Jennifer
80 rdf:type schema:Person
81 Ncc9b7c75446a4929a340ec7ef995d103 schema:affiliation https://www.grid.ac/institutes/grid.418656.8
82 schema:familyName Mairinger
83 schema:givenName Teresa
84 rdf:type schema:Person
85 Nd532c69737f24328b9828d505deaffb6 schema:name readcube_id
86 schema:value e833a1bda518da174b9ee057634e3c2c3f37197a6c04745ae7ec94d8b1348f6c
87 rdf:type schema:PropertyValue
88 Ne2a22668a27d474bbe2106cceff54f79 rdf:first Nc6f53495c5e442ffbfc78ade8e2eb645
89 rdf:rest N336e031d2d6a4e0e988b4c08709413f1
90 Nfa1dca8adfca488f99f40d4c8bc48812 rdf:first Ncc9b7c75446a4929a340ec7ef995d103
91 rdf:rest Ne2a22668a27d474bbe2106cceff54f79
92 Nfc4fb27766d448c2a1b0fb2609a6fe68 schema:name pubmed_id
93 schema:value 30796486
94 rdf:type schema:PropertyValue
95 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
96 schema:name Engineering
97 rdf:type schema:DefinedTerm
98 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
99 schema:name Chemical Engineering
100 rdf:type schema:DefinedTerm
101 sg:journal.1357342 schema:issn 1618-2642
102 1618-2650
103 schema:name Analytical and Bioanalytical Chemistry
104 rdf:type schema:Periodical
105 sg:pub.10.1007/s00216-015-8521-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037967483
106 https://doi.org/10.1007/s00216-015-8521-9
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/s00216-016-0174-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074216199
109 https://doi.org/10.1007/s00216-016-0174-9
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/s00216-017-0339-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084517394
112 https://doi.org/10.1007/s00216-017-0339-1
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/s00216-018-1017-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103251910
115 https://doi.org/10.1007/s00216-018-1017-7
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/s00253-016-7363-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000353794
118 https://doi.org/10.1007/s00253-016-7363-5
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s11306-010-0254-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025054117
121 https://doi.org/10.1007/s11306-010-0254-3
122 rdf:type schema:CreativeWork
123 sg:pub.10.1038/s41467-018-07430-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109958288
124 https://doi.org/10.1038/s41467-018-07430-4
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1002/bit.10393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035769242
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1002/oms.1210211003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030434262
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1006/mben.2001.0187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009229172
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.copbio.2013.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039718227
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.jchromb.2009.07.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036485383
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.jchromb.2011.10.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007294566
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/s0021-9673(97)01051-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012415698
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1021/ac051683+ schema:sameAs https://app.dimensions.ai/details/publication/pub.1054997535
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1021/ac502490g schema:sameAs https://app.dimensions.ai/details/publication/pub.1055019605
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1021/ac9019522 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055071766
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1021/ac991142i schema:sameAs https://app.dimensions.ai/details/publication/pub.1055077469
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1021/acs.analchem.5b03173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055079044
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1021/acs.analchem.5b03887 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055079245
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1021/acs.analchem.6b03947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055080691
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1021/acs.analchem.7b03886 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099724818
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1038/msb4100109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021019547
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1093/bioinformatics/bts127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036035355
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1093/bioinformatics/btv514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059414474
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1093/jxb/eri069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013571412
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1255/ejms.39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064520102
165 rdf:type schema:CreativeWork
166 https://www.grid.ac/institutes/grid.418656.8 schema:alternateName Swiss Federal Institute of Aquatic Science and Technology
167 schema:name Department of Chemistry, University of Natural Resources and Life Sciences—BOKU Vienna, Muthgasse 18, 1190, Vienna, Austria
168 EAWAG: Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, 8600, Dübendorf, Switzerland
169 rdf:type schema:Organization
170 https://www.grid.ac/institutes/grid.422638.9 schema:alternateName Agilent Technologies (United States)
171 schema:name Agilent Technologies Inc, 5301 Stevens Creek Boulevard, 95051, Santa Clara, CA, USA
172 rdf:type schema:Organization
173 https://www.grid.ac/institutes/grid.5173.0 schema:alternateName University of Natural Resources and Life Sciences
174 schema:name Department of Chemistry, University of Natural Resources and Life Sciences—BOKU Vienna, Muthgasse 18, 1190, Vienna, Austria
175 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...