Improved quantification of important beer quality parameters based on nonlinear calibration methods applied to FT-MIR spectra View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-01

AUTHORS

Carlos Cernuda, Edwin Lughofer, Helmut Klein, Clemens Forster, Marcin Pawliczek, Markus Brandstetter

ABSTRACT

During the production process of beer, it is of utmost importance to guarantee a high consistency of the beer quality. For instance, the bitterness is an essential quality parameter which has to be controlled within the specifications at the beginning of the production process in the unfermented beer (wort) as well as in final products such as beer and beer mix beverages. Nowadays, analytical techniques for quality control in beer production are mainly based on manual supervision, i.e., samples are taken from the process and analyzed in the laboratory. This typically requires significant lab technicians efforts for only a small fraction of samples to be analyzed, which leads to significant costs for beer breweries and companies. Fourier transform mid-infrared (FT-MIR) spectroscopy was used in combination with nonlinear multivariate calibration techniques to overcome (i) the time consuming off-line analyses in beer production and (ii) already known limitations of standard linear chemometric methods, like partial least squares (PLS), for important quality parameters Speers et al. (J I Brewing. 2003;109(3):229-235), Zhang et al. (J I Brewing. 2012;118(4):361-367) such as bitterness, citric acid, total acids, free amino nitrogen, final attenuation, or foam stability. The calibration models are established with enhanced nonlinear techniques based (i) on a new piece-wise linear version of PLS by employing fuzzy rules for local partitioning the latent variable space and (ii) on extensions of support vector regression variants (𝜖-PLSSVR and ν-PLSSVR), for overcoming high computation times in high-dimensional problems and time-intensive and inappropriate settings of the kernel parameters. Furthermore, we introduce a new model selection scheme based on bagged ensembles in order to improve robustness and thus predictive quality of the final models. The approaches are tested on real-world calibration data sets for wort and beer mix beverages, and successfully compared to linear methods, showing a clear out-performance in most cases and being able to meet the model quality requirements defined by the experts at the beer company. Figure Workflow for calibration of non-Linear model ensembles from FT-MIR spectra in beer production . More... »

PAGES

841-857

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00216-016-9785-4

DOI

http://dx.doi.org/10.1007/s00216-016-9785-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016938831

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27544522


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0301", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Analytical Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Beer", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Calibration", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Food Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Spectroscopy, Fourier Transform Infrared", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Johannes Kepler University of Linz", 
          "id": "https://www.grid.ac/institutes/grid.9970.7", 
          "name": [
            "BCAM - Basque Center for Applied Mathematics, Bilbao, Spain", 
            "Department of Knowledge-Based Mathematical Systems, Johannes Kepler University Linz, Linz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cernuda", 
        "givenName": "Carlos", 
        "id": "sg:person.011533262113.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011533262113.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johannes Kepler University of Linz", 
          "id": "https://www.grid.ac/institutes/grid.9970.7", 
          "name": [
            "Department of Knowledge-Based Mathematical Systems, Johannes Kepler University Linz, Linz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lughofer", 
        "givenName": "Edwin", 
        "id": "sg:person.01263163701.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263163701.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "BrauUnion GmbH, Poschacherstrasse 35, 4020, Linz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Klein", 
        "givenName": "Helmut", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "BrauUnion GmbH, Poschacherstrasse 35, 4020, Linz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Forster", 
        "givenName": "Clemens", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Research Center for Non Destructive Testing (Austria)", 
          "id": "https://www.grid.ac/institutes/grid.451841.d", 
          "name": [
            "RECENDT GmbH, Science Park 2, Altenbergerstrasse 69, A-4040, Linz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pawliczek", 
        "givenName": "Marcin", 
        "id": "sg:person.014437477775.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014437477775.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Research Center for Non Destructive Testing (Austria)", 
          "id": "https://www.grid.ac/institutes/grid.451841.d", 
          "name": [
            "RECENDT GmbH, Science Park 2, Altenbergerstrasse 69, A-4040, Linz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brandstetter", 
        "givenName": "Markus", 
        "id": "sg:person.0724766225.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724766225.52"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/cem.1153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000604373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:stco.0000035301.49549.88", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000991887", 
          "https://doi.org/10.1023/b:stco.0000035301.49549.88"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-18087-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001578252", 
          "https://doi.org/10.1007/978-3-642-18087-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-18087-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001578252", 
          "https://doi.org/10.1007/978-3-642-18087-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1590/s0100-40422000000100019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002829147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00058655", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002929950", 
          "https://doi.org/10.1007/bf00058655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cem.1360", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009540427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cem.1360", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009540427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemolab.2011.07.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011530587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cem.2583", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015607981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.foodchem.2014.01.060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015907476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/j.2050-0416.2005.tb00642.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019231531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1010933404324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024739340", 
          "https://doi.org/10.1023/a:1010933404324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.foodchem.2005.12.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025969309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.trac.2009.07.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026192623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12530-015-9132-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028428512", 
          "https://doi.org/10.1007/s12530-015-9132-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/07-aoas131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031228174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1207/s15328031us0304_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032127731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1032573094", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-84858-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032573094", 
          "https://doi.org/10.1007/978-0-387-84858-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-84858-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032573094", 
          "https://doi.org/10.1007/978-0-387-84858-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemolab.2007.10.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037027284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemolab.2013.05.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038799443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9868.2005.00503.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043971564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/j.2050-0416.2003.tb00163.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045414454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jib.50", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047739520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfoodeng.2011.05.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049921626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2015.01.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051461745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac960321m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055072724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac960321m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055072724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1094/asbcj-45-0006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060072134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/massp.1984.1162229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061385392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tfuzz.2008.925908", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061606233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmcb.2003.817053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061796224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/009053607000000677", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064389092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9781420059496", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095903779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0470863242", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0470863242", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/047010631x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/047010631x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470473900", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098662153"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-01", 
    "datePublishedReg": "2017-01-01", 
    "description": "During the production process of beer, it is of utmost importance to guarantee a high consistency of the beer quality. For instance, the bitterness is an essential quality parameter which has to be controlled within the specifications at the beginning of the production process in the unfermented beer (wort) as well as in final products such as beer and beer mix beverages. Nowadays, analytical techniques for quality control in beer production are mainly based on manual supervision, i.e., samples are taken from the process and analyzed in the laboratory. This typically requires significant lab technicians efforts for only a small fraction of samples to be analyzed, which leads to significant costs for beer breweries and companies. Fourier transform mid-infrared (FT-MIR) spectroscopy was used in combination with nonlinear multivariate calibration techniques to overcome (i) the time consuming off-line analyses in beer production and (ii) already known limitations of standard linear chemometric methods, like partial least squares (PLS), for important quality parameters Speers et al. (J I Brewing. 2003;109(3):229-235), Zhang et al. (J I Brewing. 2012;118(4):361-367) such as bitterness, citric acid, total acids, free amino nitrogen, final attenuation, or foam stability. The calibration models are established with enhanced nonlinear techniques based (i) on a new piece-wise linear version of PLS by employing fuzzy rules for local partitioning the latent variable space and (ii) on extensions of support vector regression variants (\ud835\udf16-PLSSVR and \u03bd-PLSSVR), for overcoming high computation times in high-dimensional problems and time-intensive and inappropriate settings of the kernel parameters. Furthermore, we introduce a new model selection scheme based on bagged ensembles in order to improve robustness and thus predictive quality of the final models. The approaches are tested on real-world calibration data sets for wort and beer mix beverages, and successfully compared to linear methods, showing a clear out-performance in most cases and being able to meet the model quality requirements defined by the experts at the beer company. Figure Workflow for calibration of non-Linear model ensembles from FT-MIR spectra in beer production\u2009.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00216-016-9785-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1357342", 
        "issn": [
          "1618-2642", 
          "1618-2650"
        ], 
        "name": "Analytical and Bioanalytical Chemistry", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "409"
      }
    ], 
    "name": "Improved quantification of important beer quality parameters based on nonlinear calibration methods applied to FT-MIR spectra", 
    "pagination": "841-857", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "50b471bd4d77fe4057b76a22145026fc9836ac5deab79ae6e8799a86af5df49f"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27544522"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101134327"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00216-016-9785-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016938831"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00216-016-9785-4", 
      "https://app.dimensions.ai/details/publication/pub.1016938831"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87083_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00216-016-9785-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00216-016-9785-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00216-016-9785-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00216-016-9785-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00216-016-9785-4'


 

This table displays all metadata directly associated to this object as RDF triples.

236 TRIPLES      21 PREDICATES      68 URIs      25 LITERALS      13 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00216-016-9785-4 schema:about N237f5dafc7a845b7a980ccc70eadedcf
2 N548cd7ea5bb44ec08c593f52ebb1e194
3 N7fbe5f6588054df2acdd8d0ac3eb8262
4 N8ff1873505584d439e93a1094fe62797
5 anzsrc-for:03
6 anzsrc-for:0301
7 schema:author N7fd9dcab0e9e42dfa30bf8ff9167b6ee
8 schema:citation sg:pub.10.1007/978-0-387-84858-7
9 sg:pub.10.1007/978-3-642-18087-3
10 sg:pub.10.1007/bf00058655
11 sg:pub.10.1007/s12530-015-9132-6
12 sg:pub.10.1023/a:1010933404324
13 sg:pub.10.1023/b:stco.0000035301.49549.88
14 https://app.dimensions.ai/details/publication/pub.1032573094
15 https://doi.org/10.1002/047010631x
16 https://doi.org/10.1002/0470863242
17 https://doi.org/10.1002/9780470473900
18 https://doi.org/10.1002/cem.1153
19 https://doi.org/10.1002/cem.1360
20 https://doi.org/10.1002/cem.2583
21 https://doi.org/10.1002/j.2050-0416.2003.tb00163.x
22 https://doi.org/10.1002/j.2050-0416.2005.tb00642.x
23 https://doi.org/10.1002/jib.50
24 https://doi.org/10.1016/j.chemolab.2007.10.001
25 https://doi.org/10.1016/j.chemolab.2011.07.004
26 https://doi.org/10.1016/j.chemolab.2013.05.001
27 https://doi.org/10.1016/j.foodchem.2005.12.032
28 https://doi.org/10.1016/j.foodchem.2014.01.060
29 https://doi.org/10.1016/j.ins.2015.01.010
30 https://doi.org/10.1016/j.jfoodeng.2011.05.003
31 https://doi.org/10.1016/j.trac.2009.07.007
32 https://doi.org/10.1021/ac960321m
33 https://doi.org/10.1094/asbcj-45-0006
34 https://doi.org/10.1109/massp.1984.1162229
35 https://doi.org/10.1109/tfuzz.2008.925908
36 https://doi.org/10.1109/tsmcb.2003.817053
37 https://doi.org/10.1111/j.1467-9868.2005.00503.x
38 https://doi.org/10.1201/9781420059496
39 https://doi.org/10.1207/s15328031us0304_4
40 https://doi.org/10.1214/009053607000000677
41 https://doi.org/10.1214/07-aoas131
42 https://doi.org/10.1590/s0100-40422000000100019
43 schema:datePublished 2017-01
44 schema:datePublishedReg 2017-01-01
45 schema:description During the production process of beer, it is of utmost importance to guarantee a high consistency of the beer quality. For instance, the bitterness is an essential quality parameter which has to be controlled within the specifications at the beginning of the production process in the unfermented beer (wort) as well as in final products such as beer and beer mix beverages. Nowadays, analytical techniques for quality control in beer production are mainly based on manual supervision, i.e., samples are taken from the process and analyzed in the laboratory. This typically requires significant lab technicians efforts for only a small fraction of samples to be analyzed, which leads to significant costs for beer breweries and companies. Fourier transform mid-infrared (FT-MIR) spectroscopy was used in combination with nonlinear multivariate calibration techniques to overcome (i) the time consuming off-line analyses in beer production and (ii) already known limitations of standard linear chemometric methods, like partial least squares (PLS), for important quality parameters Speers et al. (J I Brewing. 2003;109(3):229-235), Zhang et al. (J I Brewing. 2012;118(4):361-367) such as bitterness, citric acid, total acids, free amino nitrogen, final attenuation, or foam stability. The calibration models are established with enhanced nonlinear techniques based (i) on a new piece-wise linear version of PLS by employing fuzzy rules for local partitioning the latent variable space and (ii) on extensions of support vector regression variants (𝜖-PLSSVR and ν-PLSSVR), for overcoming high computation times in high-dimensional problems and time-intensive and inappropriate settings of the kernel parameters. Furthermore, we introduce a new model selection scheme based on bagged ensembles in order to improve robustness and thus predictive quality of the final models. The approaches are tested on real-world calibration data sets for wort and beer mix beverages, and successfully compared to linear methods, showing a clear out-performance in most cases and being able to meet the model quality requirements defined by the experts at the beer company. Figure Workflow for calibration of non-Linear model ensembles from FT-MIR spectra in beer production .
46 schema:genre research_article
47 schema:inLanguage en
48 schema:isAccessibleForFree true
49 schema:isPartOf N2d235775e94e4b228e62640230f67f8f
50 N75efb0749a044d7f9597426f9ddcb387
51 sg:journal.1357342
52 schema:name Improved quantification of important beer quality parameters based on nonlinear calibration methods applied to FT-MIR spectra
53 schema:pagination 841-857
54 schema:productId N2f938eafb10b4db0a0a888c20da72efb
55 N4a5199ae5ebc459ea8fa1cd430978add
56 N6862c0179a304016b5bb404e7cb00d18
57 N6d66d2a2760940c58af4e58ffa894719
58 N7c97219c91f34d539eeeff0c233f9689
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016938831
60 https://doi.org/10.1007/s00216-016-9785-4
61 schema:sdDatePublished 2019-04-11T12:22
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher Nb49b97904fd3456a9214313f6edfbf57
64 schema:url https://link.springer.com/10.1007%2Fs00216-016-9785-4
65 sgo:license sg:explorer/license/
66 sgo:sdDataset articles
67 rdf:type schema:ScholarlyArticle
68 N1cc06d1b47ac4f88a5a9eb85c05e53c0 schema:name BrauUnion GmbH, Poschacherstrasse 35, 4020, Linz, Austria
69 rdf:type schema:Organization
70 N237f5dafc7a845b7a980ccc70eadedcf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Spectroscopy, Fourier Transform Infrared
72 rdf:type schema:DefinedTerm
73 N2d235775e94e4b228e62640230f67f8f schema:volumeNumber 409
74 rdf:type schema:PublicationVolume
75 N2f938eafb10b4db0a0a888c20da72efb schema:name dimensions_id
76 schema:value pub.1016938831
77 rdf:type schema:PropertyValue
78 N41ff1a8728304c26ae32fdd1b64f55e2 rdf:first sg:person.01263163701.87
79 rdf:rest Nb646902cabc94d139a0c492f2b941c42
80 N4a5199ae5ebc459ea8fa1cd430978add schema:name pubmed_id
81 schema:value 27544522
82 rdf:type schema:PropertyValue
83 N548cd7ea5bb44ec08c593f52ebb1e194 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Beer
85 rdf:type schema:DefinedTerm
86 N5e1a4bdabf344693815d7b46a7f5206c schema:affiliation N1cc06d1b47ac4f88a5a9eb85c05e53c0
87 schema:familyName Forster
88 schema:givenName Clemens
89 rdf:type schema:Person
90 N6862c0179a304016b5bb404e7cb00d18 schema:name doi
91 schema:value 10.1007/s00216-016-9785-4
92 rdf:type schema:PropertyValue
93 N6d66d2a2760940c58af4e58ffa894719 schema:name readcube_id
94 schema:value 50b471bd4d77fe4057b76a22145026fc9836ac5deab79ae6e8799a86af5df49f
95 rdf:type schema:PropertyValue
96 N75efb0749a044d7f9597426f9ddcb387 schema:issueNumber 3
97 rdf:type schema:PublicationIssue
98 N7c97219c91f34d539eeeff0c233f9689 schema:name nlm_unique_id
99 schema:value 101134327
100 rdf:type schema:PropertyValue
101 N7fbe5f6588054df2acdd8d0ac3eb8262 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Calibration
103 rdf:type schema:DefinedTerm
104 N7fd9dcab0e9e42dfa30bf8ff9167b6ee rdf:first sg:person.011533262113.54
105 rdf:rest N41ff1a8728304c26ae32fdd1b64f55e2
106 N83480ca15f4144c4b1c8b565be5487a9 rdf:first sg:person.014437477775.32
107 rdf:rest Nabd6c86a36c14ecfabdd2d811fc64246
108 N8ff1873505584d439e93a1094fe62797 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Food Analysis
110 rdf:type schema:DefinedTerm
111 Nabd6c86a36c14ecfabdd2d811fc64246 rdf:first sg:person.0724766225.52
112 rdf:rest rdf:nil
113 Nb1c3731d7ea7441b83916d313b542610 schema:name BrauUnion GmbH, Poschacherstrasse 35, 4020, Linz, Austria
114 rdf:type schema:Organization
115 Nb49b97904fd3456a9214313f6edfbf57 schema:name Springer Nature - SN SciGraph project
116 rdf:type schema:Organization
117 Nb646902cabc94d139a0c492f2b941c42 rdf:first Ne0b0449342b743ec98b574358c835b26
118 rdf:rest Nd334d05515a54c5a989095e3cdb923e9
119 Nd334d05515a54c5a989095e3cdb923e9 rdf:first N5e1a4bdabf344693815d7b46a7f5206c
120 rdf:rest N83480ca15f4144c4b1c8b565be5487a9
121 Ne0b0449342b743ec98b574358c835b26 schema:affiliation Nb1c3731d7ea7441b83916d313b542610
122 schema:familyName Klein
123 schema:givenName Helmut
124 rdf:type schema:Person
125 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
126 schema:name Chemical Sciences
127 rdf:type schema:DefinedTerm
128 anzsrc-for:0301 schema:inDefinedTermSet anzsrc-for:
129 schema:name Analytical Chemistry
130 rdf:type schema:DefinedTerm
131 sg:journal.1357342 schema:issn 1618-2642
132 1618-2650
133 schema:name Analytical and Bioanalytical Chemistry
134 rdf:type schema:Periodical
135 sg:person.011533262113.54 schema:affiliation https://www.grid.ac/institutes/grid.9970.7
136 schema:familyName Cernuda
137 schema:givenName Carlos
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011533262113.54
139 rdf:type schema:Person
140 sg:person.01263163701.87 schema:affiliation https://www.grid.ac/institutes/grid.9970.7
141 schema:familyName Lughofer
142 schema:givenName Edwin
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263163701.87
144 rdf:type schema:Person
145 sg:person.014437477775.32 schema:affiliation https://www.grid.ac/institutes/grid.451841.d
146 schema:familyName Pawliczek
147 schema:givenName Marcin
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014437477775.32
149 rdf:type schema:Person
150 sg:person.0724766225.52 schema:affiliation https://www.grid.ac/institutes/grid.451841.d
151 schema:familyName Brandstetter
152 schema:givenName Markus
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724766225.52
154 rdf:type schema:Person
155 sg:pub.10.1007/978-0-387-84858-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032573094
156 https://doi.org/10.1007/978-0-387-84858-7
157 rdf:type schema:CreativeWork
158 sg:pub.10.1007/978-3-642-18087-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001578252
159 https://doi.org/10.1007/978-3-642-18087-3
160 rdf:type schema:CreativeWork
161 sg:pub.10.1007/bf00058655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002929950
162 https://doi.org/10.1007/bf00058655
163 rdf:type schema:CreativeWork
164 sg:pub.10.1007/s12530-015-9132-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028428512
165 https://doi.org/10.1007/s12530-015-9132-6
166 rdf:type schema:CreativeWork
167 sg:pub.10.1023/a:1010933404324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024739340
168 https://doi.org/10.1023/a:1010933404324
169 rdf:type schema:CreativeWork
170 sg:pub.10.1023/b:stco.0000035301.49549.88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000991887
171 https://doi.org/10.1023/b:stco.0000035301.49549.88
172 rdf:type schema:CreativeWork
173 https://app.dimensions.ai/details/publication/pub.1032573094 schema:CreativeWork
174 https://doi.org/10.1002/047010631x schema:sameAs https://app.dimensions.ai/details/publication/pub.1098661358
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1002/0470863242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098661102
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1002/9780470473900 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098662153
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1002/cem.1153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000604373
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1002/cem.1360 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009540427
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1002/cem.2583 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015607981
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1002/j.2050-0416.2003.tb00163.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1045414454
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1002/j.2050-0416.2005.tb00642.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019231531
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1002/jib.50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047739520
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/j.chemolab.2007.10.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037027284
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/j.chemolab.2011.07.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011530587
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/j.chemolab.2013.05.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038799443
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/j.foodchem.2005.12.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025969309
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/j.foodchem.2014.01.060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015907476
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/j.ins.2015.01.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051461745
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1016/j.jfoodeng.2011.05.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049921626
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1016/j.trac.2009.07.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026192623
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1021/ac960321m schema:sameAs https://app.dimensions.ai/details/publication/pub.1055072724
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1094/asbcj-45-0006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060072134
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1109/massp.1984.1162229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061385392
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1109/tfuzz.2008.925908 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061606233
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1109/tsmcb.2003.817053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061796224
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1111/j.1467-9868.2005.00503.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043971564
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1201/9781420059496 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095903779
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1207/s15328031us0304_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032127731
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1214/009053607000000677 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064389092
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1214/07-aoas131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031228174
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1590/s0100-40422000000100019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002829147
229 rdf:type schema:CreativeWork
230 https://www.grid.ac/institutes/grid.451841.d schema:alternateName Research Center for Non Destructive Testing (Austria)
231 schema:name RECENDT GmbH, Science Park 2, Altenbergerstrasse 69, A-4040, Linz, Austria
232 rdf:type schema:Organization
233 https://www.grid.ac/institutes/grid.9970.7 schema:alternateName Johannes Kepler University of Linz
234 schema:name BCAM - Basque Center for Applied Mathematics, Bilbao, Spain
235 Department of Knowledge-Based Mathematical Systems, Johannes Kepler University Linz, Linz, Austria
236 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...