Fourier-transform-infrared-spectroscopy based spectral-biomarker selection towards optimum diagnostic differentiation of oral leukoplakia and cancer View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-10

AUTHORS

Satarupa Banerjee, Mousumi Pal, Jitamanyu Chakrabarty, Cyril Petibois, Ranjan Rashmi Paul, Amita Giri, Jyotirmoy Chatterjee

ABSTRACT

In search of specific label-free biomarkers for differentiation of two oral lesions, namely oral leukoplakia (OLK) and oral squamous-cell carcinoma (OSCC), Fourier-transform infrared (FTIR) spectroscopy was performed on paraffin-embedded tissue sections from 47 human subjects (eight normal (NOM), 16 OLK, and 23 OSCC). Difference between mean spectra (DBMS), Mann-Whitney's U test, and forward feature selection (FFS) techniques were used for optimising spectral-marker selection. Classification of diseases was performed with linear and quadratic support vector machine (SVM) at 10-fold cross-validation, using different combinations of spectral features. It was observed that six features obtained through FFS enabled differentiation of NOM and OSCC tissue (1782, 1713, 1665, 1545, 1409, and 1161 cm(-1)) and were most significant, able to classify OLK and OSCC with 81.3 % sensitivity, 95.7 % specificity, and 89.7 % overall accuracy. The 43 spectral markers extracted through Mann-Whitney's U Test were the least significant when quadratic SVM was used. Considering the high sensitivity and specificity of the FFS technique, extracting only six spectral biomarkers was thus most useful for diagnosis of OLK and OSCC, and to overcome inter and intra-observer variability experienced in diagnostic best-practice histopathological procedure. By considering the biochemical assignment of these six spectral signatures, this work also revealed altered glycogen and keratin content in histological sections which could able to discriminate OLK and OSCC. The method was validated through spectral selection by the DBMS technique. Thus this method has potential for diagnostic cost minimisation for oral lesions by label-free biomarker identification. More... »

PAGES

7935-7943

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00216-015-8960-3

DOI

http://dx.doi.org/10.1007/s00216-015-8960-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040447617

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26342309


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1004", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical Biotechnology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomarkers, Tumor", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carcinoma, Squamous Cell", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Leukoplakia, Oral", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mouth", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mouth Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Spectroscopy, Fourier Transform Infrared", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Support Vector Machine", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Indian Institute of Technology Kharagpur", 
          "id": "https://www.grid.ac/institutes/grid.429017.9", 
          "name": [
            "School of Medical Science and Technology, Indian Institute of Technology, 721302, Kharagpur, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Banerjee", 
        "givenName": "Satarupa", 
        "id": "sg:person.0735321325.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0735321325.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Oral and Maxillofacial Pathology, Guru Nanak Institute of Dental Science and Research, 157/F Nilganj Road, Panihati, 700 114, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pal", 
        "givenName": "Mousumi", 
        "id": "sg:person.0610042437.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610042437.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Technology Durgapur", 
          "id": "https://www.grid.ac/institutes/grid.444419.8", 
          "name": [
            "Department of Chemistry, National Institute of Technology, 713209, Durgapur, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chakrabarty", 
        "givenName": "Jitamanyu", 
        "id": "sg:person.0763236303.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763236303.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Bordeaux", 
          "id": "https://www.grid.ac/institutes/grid.412041.2", 
          "name": [
            "University of Bordeaux \u2013 Inserm U1029 LAMC \u2013 Biophysics of Vascular Plasticity, 33608, Pessac, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Petibois", 
        "givenName": "Cyril", 
        "id": "sg:person.0613723320.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0613723320.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Oral and Maxillofacial Pathology, Guru Nanak Institute of Dental Science and Research, 157/F Nilganj Road, Panihati, 700 114, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Paul", 
        "givenName": "Ranjan Rashmi", 
        "id": "sg:person.01040517437.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040517437.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "North Bengal Medical College and Hospital", 
          "id": "https://www.grid.ac/institutes/grid.416411.7", 
          "name": [
            "Department of Pathology, North Bengal Medical College and Hospital, 734012, Darjeeling, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Giri", 
        "givenName": "Amita", 
        "id": "sg:person.010275311202.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010275311202.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Institute of Technology Kharagpur", 
          "id": "https://www.grid.ac/institutes/grid.429017.9", 
          "name": [
            "School of Medical Science and Technology, Indian Institute of Technology, 721302, Kharagpur, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chatterjee", 
        "givenName": "Jyotirmoy", 
        "id": "sg:person.01246277203.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246277203.66"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.addr.2015.03.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000480879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4137/bic.s12951", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001303079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1520-6343(1999)5:2<117::aid-bspy5>3.0.co;2-k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005752091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c3an00256j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008044405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.oraloncology.2008.05.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012323208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0030-4220(68)90437-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013527782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0030-4220(68)90437-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013527782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-3835(96)04450-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015421036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1745-7270.2007.00320.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017684681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c2an35483g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020634264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/154411130301400105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020876508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/154411130301400105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020876508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hed.23962", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024019656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1472-6947-10-16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027114800", 
          "https://doi.org/10.1186/1472-6947-10-16"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c2an16300d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029863020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jbio.201300190", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031134214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/jid.1955.82", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031633985", 
          "https://doi.org/10.1038/jid.1955.82"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/excr.1993.1185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033990461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2014.110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034819774", 
          "https://doi.org/10.1038/nprot.2014.110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c2ay25544h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035641215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0116491", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036450390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cdp.2003.11.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038523471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/05704920701829043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040216494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btt084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041296281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1096/fj.02-0752rev", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041814143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/jid.1958.130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047246942", 
          "https://doi.org/10.1038/jid.1958.130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00216-006-0827-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048936592", 
          "https://doi.org/10.1007/s00216-006-0827-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00216-006-0827-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048936592", 
          "https://doi.org/10.1007/s00216-006-0827-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1385/bter:87:1-3:045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048972841", 
          "https://doi.org/10.1385/bter:87:1-3:045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00024382-199912000-00012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050444766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00024382-199912000-00012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050444766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1749-6632.1960.tb49965.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050527222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-4165(91)90172-d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052688489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-4165(91)90172-d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052688489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/1.jbo.17.10.105002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052929323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/amr.550-553.1304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072027226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078495556", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-10", 
    "datePublishedReg": "2015-10-01", 
    "description": "In search of specific label-free biomarkers for differentiation of two oral lesions, namely oral leukoplakia (OLK) and oral squamous-cell carcinoma (OSCC), Fourier-transform infrared (FTIR) spectroscopy was performed on paraffin-embedded tissue sections from 47 human subjects (eight normal (NOM), 16 OLK, and 23 OSCC). Difference between mean spectra (DBMS), Mann-Whitney's U test, and forward feature selection (FFS) techniques were used for optimising spectral-marker selection. Classification of diseases was performed with linear and quadratic support vector machine (SVM) at 10-fold cross-validation, using different combinations of spectral features. It was observed that six features obtained through FFS enabled differentiation of NOM and OSCC tissue (1782, 1713, 1665, 1545, 1409, and 1161\u00a0cm(-1)) and were most significant, able to classify OLK and OSCC with 81.3\u00a0% sensitivity, 95.7\u00a0% specificity, and 89.7\u00a0% overall accuracy. The 43 spectral markers extracted through Mann-Whitney's U Test were the least significant when quadratic SVM was used. Considering the high sensitivity and specificity of the FFS technique, extracting only six spectral biomarkers was thus most useful for diagnosis of OLK and OSCC, and to overcome inter and intra-observer variability experienced in diagnostic best-practice histopathological procedure. By considering the biochemical assignment of these six spectral signatures, this work also revealed altered glycogen and keratin content in histological sections which could able to discriminate OLK and OSCC. The method was validated through spectral selection by the DBMS technique. Thus this method has potential for diagnostic cost minimisation for oral lesions by label-free biomarker identification. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00216-015-8960-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1357342", 
        "issn": [
          "1618-2642", 
          "1618-2650"
        ], 
        "name": "Analytical and Bioanalytical Chemistry", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "26", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "407"
      }
    ], 
    "name": "Fourier-transform-infrared-spectroscopy based spectral-biomarker selection towards optimum diagnostic differentiation of oral leukoplakia and cancer", 
    "pagination": "7935-7943", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c0acde10e1727a67ab61381a40608b58f168b25a413602daa6e1833900188448"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26342309"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101134327"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00216-015-8960-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040447617"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00216-015-8960-3", 
      "https://app.dimensions.ai/details/publication/pub.1040447617"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000592.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00216-015-8960-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00216-015-8960-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00216-015-8960-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00216-015-8960-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00216-015-8960-3'


 

This table displays all metadata directly associated to this object as RDF triples.

261 TRIPLES      21 PREDICATES      70 URIs      30 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00216-015-8960-3 schema:about N273a5b11d6e4496da2f99a1c6ad97883
2 N3325d3a1369d42b7a136a8e456a7fd50
3 Na3b9a7af9f484c578e46f9cf618d5ef2
4 Nad5aac4c99104f888952d8fc72a0be4b
5 Nb2310481a5084a74b73ace24a69b8b3d
6 Ncecf3dd3b8144966a947818e3f9f4d09
7 Nd2faebb036be44178b04239e40e88b72
8 Ne5e83883c5f74714950b35293e032155
9 Nfc78f2670b2146ea91abd8c131949663
10 anzsrc-for:10
11 anzsrc-for:1004
12 schema:author N17b6717b1230485cad3fbe5cb04a7931
13 schema:citation sg:pub.10.1007/s00216-006-0827-1
14 sg:pub.10.1038/jid.1955.82
15 sg:pub.10.1038/jid.1958.130
16 sg:pub.10.1038/nprot.2014.110
17 sg:pub.10.1186/1472-6947-10-16
18 sg:pub.10.1385/bter:87:1-3:045
19 https://app.dimensions.ai/details/publication/pub.1078495556
20 https://doi.org/10.1002/(sici)1520-6343(1999)5:2<117::aid-bspy5>3.0.co;2-k
21 https://doi.org/10.1002/hed.23962
22 https://doi.org/10.1002/jbio.201300190
23 https://doi.org/10.1006/excr.1993.1185
24 https://doi.org/10.1016/0030-4220(68)90437-4
25 https://doi.org/10.1016/0304-4165(91)90172-d
26 https://doi.org/10.1016/j.addr.2015.03.009
27 https://doi.org/10.1016/j.cdp.2003.11.004
28 https://doi.org/10.1016/j.oraloncology.2008.05.016
29 https://doi.org/10.1016/s0304-3835(96)04450-3
30 https://doi.org/10.1039/c2an16300d
31 https://doi.org/10.1039/c2an35483g
32 https://doi.org/10.1039/c2ay25544h
33 https://doi.org/10.1039/c3an00256j
34 https://doi.org/10.1080/05704920701829043
35 https://doi.org/10.1093/bioinformatics/btt084
36 https://doi.org/10.1096/fj.02-0752rev
37 https://doi.org/10.1097/00024382-199912000-00012
38 https://doi.org/10.1111/j.1745-7270.2007.00320.x
39 https://doi.org/10.1111/j.1749-6632.1960.tb49965.x
40 https://doi.org/10.1117/1.jbo.17.10.105002
41 https://doi.org/10.1177/154411130301400105
42 https://doi.org/10.1371/journal.pone.0116491
43 https://doi.org/10.4028/www.scientific.net/amr.550-553.1304
44 https://doi.org/10.4137/bic.s12951
45 schema:datePublished 2015-10
46 schema:datePublishedReg 2015-10-01
47 schema:description In search of specific label-free biomarkers for differentiation of two oral lesions, namely oral leukoplakia (OLK) and oral squamous-cell carcinoma (OSCC), Fourier-transform infrared (FTIR) spectroscopy was performed on paraffin-embedded tissue sections from 47 human subjects (eight normal (NOM), 16 OLK, and 23 OSCC). Difference between mean spectra (DBMS), Mann-Whitney's U test, and forward feature selection (FFS) techniques were used for optimising spectral-marker selection. Classification of diseases was performed with linear and quadratic support vector machine (SVM) at 10-fold cross-validation, using different combinations of spectral features. It was observed that six features obtained through FFS enabled differentiation of NOM and OSCC tissue (1782, 1713, 1665, 1545, 1409, and 1161 cm(-1)) and were most significant, able to classify OLK and OSCC with 81.3 % sensitivity, 95.7 % specificity, and 89.7 % overall accuracy. The 43 spectral markers extracted through Mann-Whitney's U Test were the least significant when quadratic SVM was used. Considering the high sensitivity and specificity of the FFS technique, extracting only six spectral biomarkers was thus most useful for diagnosis of OLK and OSCC, and to overcome inter and intra-observer variability experienced in diagnostic best-practice histopathological procedure. By considering the biochemical assignment of these six spectral signatures, this work also revealed altered glycogen and keratin content in histological sections which could able to discriminate OLK and OSCC. The method was validated through spectral selection by the DBMS technique. Thus this method has potential for diagnostic cost minimisation for oral lesions by label-free biomarker identification.
48 schema:genre research_article
49 schema:inLanguage en
50 schema:isAccessibleForFree false
51 schema:isPartOf N3e34609cecb84c43a59b274bb5629f42
52 Nc6d7a9ee797649ff9275cd8e4145c3c3
53 sg:journal.1357342
54 schema:name Fourier-transform-infrared-spectroscopy based spectral-biomarker selection towards optimum diagnostic differentiation of oral leukoplakia and cancer
55 schema:pagination 7935-7943
56 schema:productId N60db8a278cd144c785cc144fc766eada
57 N63acca7344f149e1857ad517915722e8
58 N720ca5d0a43c4719b1320f8611d89bc6
59 N7e63881844374e71bc9ef3500d29cd2d
60 N9b9f39f1f0b44a1ea73e982baef465e2
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040447617
62 https://doi.org/10.1007/s00216-015-8960-3
63 schema:sdDatePublished 2019-04-10T15:13
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher N61e9a0aec1564bc1b92e17d3f053152e
66 schema:url http://link.springer.com/10.1007%2Fs00216-015-8960-3
67 sgo:license sg:explorer/license/
68 sgo:sdDataset articles
69 rdf:type schema:ScholarlyArticle
70 N17b6717b1230485cad3fbe5cb04a7931 rdf:first sg:person.0735321325.93
71 rdf:rest N9cac87077ba145a5bdeb56505383f52c
72 N273a5b11d6e4496da2f99a1c6ad97883 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Carcinoma, Squamous Cell
74 rdf:type schema:DefinedTerm
75 N3325d3a1369d42b7a136a8e456a7fd50 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Support Vector Machine
77 rdf:type schema:DefinedTerm
78 N3750af65552245e8aee09d0bdde25cb9 schema:name Department of Oral and Maxillofacial Pathology, Guru Nanak Institute of Dental Science and Research, 157/F Nilganj Road, Panihati, 700 114, Kolkata, India
79 rdf:type schema:Organization
80 N3aae12b1158b43da949348be2bd82d99 schema:name Department of Oral and Maxillofacial Pathology, Guru Nanak Institute of Dental Science and Research, 157/F Nilganj Road, Panihati, 700 114, Kolkata, India
81 rdf:type schema:Organization
82 N3e34609cecb84c43a59b274bb5629f42 schema:issueNumber 26
83 rdf:type schema:PublicationIssue
84 N4d13c5d5defc47d199e5ccf2df3a7d81 rdf:first sg:person.01246277203.66
85 rdf:rest rdf:nil
86 N5f37661a00c1446287af4ce84b894956 rdf:first sg:person.0613723320.30
87 rdf:rest Nbf69baaa87444d38a517c8b551313ab4
88 N60db8a278cd144c785cc144fc766eada schema:name readcube_id
89 schema:value c0acde10e1727a67ab61381a40608b58f168b25a413602daa6e1833900188448
90 rdf:type schema:PropertyValue
91 N61e9a0aec1564bc1b92e17d3f053152e schema:name Springer Nature - SN SciGraph project
92 rdf:type schema:Organization
93 N63acca7344f149e1857ad517915722e8 schema:name dimensions_id
94 schema:value pub.1040447617
95 rdf:type schema:PropertyValue
96 N720ca5d0a43c4719b1320f8611d89bc6 schema:name doi
97 schema:value 10.1007/s00216-015-8960-3
98 rdf:type schema:PropertyValue
99 N7b43ad0031d745cbb85b781fb14fc907 rdf:first sg:person.010275311202.18
100 rdf:rest N4d13c5d5defc47d199e5ccf2df3a7d81
101 N7cb22a85241742d3bbcf4de0be6939ec rdf:first sg:person.0763236303.26
102 rdf:rest N5f37661a00c1446287af4ce84b894956
103 N7e63881844374e71bc9ef3500d29cd2d schema:name pubmed_id
104 schema:value 26342309
105 rdf:type schema:PropertyValue
106 N9b9f39f1f0b44a1ea73e982baef465e2 schema:name nlm_unique_id
107 schema:value 101134327
108 rdf:type schema:PropertyValue
109 N9cac87077ba145a5bdeb56505383f52c rdf:first sg:person.0610042437.00
110 rdf:rest N7cb22a85241742d3bbcf4de0be6939ec
111 Na3b9a7af9f484c578e46f9cf618d5ef2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Spectroscopy, Fourier Transform Infrared
113 rdf:type schema:DefinedTerm
114 Nad5aac4c99104f888952d8fc72a0be4b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Mouth
116 rdf:type schema:DefinedTerm
117 Nb2310481a5084a74b73ace24a69b8b3d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Biomarkers, Tumor
119 rdf:type schema:DefinedTerm
120 Nbf69baaa87444d38a517c8b551313ab4 rdf:first sg:person.01040517437.95
121 rdf:rest N7b43ad0031d745cbb85b781fb14fc907
122 Nc6d7a9ee797649ff9275cd8e4145c3c3 schema:volumeNumber 407
123 rdf:type schema:PublicationVolume
124 Ncecf3dd3b8144966a947818e3f9f4d09 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Mouth Neoplasms
126 rdf:type schema:DefinedTerm
127 Nd2faebb036be44178b04239e40e88b72 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Sensitivity and Specificity
129 rdf:type schema:DefinedTerm
130 Ne5e83883c5f74714950b35293e032155 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Leukoplakia, Oral
132 rdf:type schema:DefinedTerm
133 Nfc78f2670b2146ea91abd8c131949663 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Humans
135 rdf:type schema:DefinedTerm
136 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
137 schema:name Technology
138 rdf:type schema:DefinedTerm
139 anzsrc-for:1004 schema:inDefinedTermSet anzsrc-for:
140 schema:name Medical Biotechnology
141 rdf:type schema:DefinedTerm
142 sg:journal.1357342 schema:issn 1618-2642
143 1618-2650
144 schema:name Analytical and Bioanalytical Chemistry
145 rdf:type schema:Periodical
146 sg:person.010275311202.18 schema:affiliation https://www.grid.ac/institutes/grid.416411.7
147 schema:familyName Giri
148 schema:givenName Amita
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010275311202.18
150 rdf:type schema:Person
151 sg:person.01040517437.95 schema:affiliation N3aae12b1158b43da949348be2bd82d99
152 schema:familyName Paul
153 schema:givenName Ranjan Rashmi
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040517437.95
155 rdf:type schema:Person
156 sg:person.01246277203.66 schema:affiliation https://www.grid.ac/institutes/grid.429017.9
157 schema:familyName Chatterjee
158 schema:givenName Jyotirmoy
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246277203.66
160 rdf:type schema:Person
161 sg:person.0610042437.00 schema:affiliation N3750af65552245e8aee09d0bdde25cb9
162 schema:familyName Pal
163 schema:givenName Mousumi
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610042437.00
165 rdf:type schema:Person
166 sg:person.0613723320.30 schema:affiliation https://www.grid.ac/institutes/grid.412041.2
167 schema:familyName Petibois
168 schema:givenName Cyril
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0613723320.30
170 rdf:type schema:Person
171 sg:person.0735321325.93 schema:affiliation https://www.grid.ac/institutes/grid.429017.9
172 schema:familyName Banerjee
173 schema:givenName Satarupa
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0735321325.93
175 rdf:type schema:Person
176 sg:person.0763236303.26 schema:affiliation https://www.grid.ac/institutes/grid.444419.8
177 schema:familyName Chakrabarty
178 schema:givenName Jitamanyu
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763236303.26
180 rdf:type schema:Person
181 sg:pub.10.1007/s00216-006-0827-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048936592
182 https://doi.org/10.1007/s00216-006-0827-1
183 rdf:type schema:CreativeWork
184 sg:pub.10.1038/jid.1955.82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031633985
185 https://doi.org/10.1038/jid.1955.82
186 rdf:type schema:CreativeWork
187 sg:pub.10.1038/jid.1958.130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047246942
188 https://doi.org/10.1038/jid.1958.130
189 rdf:type schema:CreativeWork
190 sg:pub.10.1038/nprot.2014.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034819774
191 https://doi.org/10.1038/nprot.2014.110
192 rdf:type schema:CreativeWork
193 sg:pub.10.1186/1472-6947-10-16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027114800
194 https://doi.org/10.1186/1472-6947-10-16
195 rdf:type schema:CreativeWork
196 sg:pub.10.1385/bter:87:1-3:045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048972841
197 https://doi.org/10.1385/bter:87:1-3:045
198 rdf:type schema:CreativeWork
199 https://app.dimensions.ai/details/publication/pub.1078495556 schema:CreativeWork
200 https://doi.org/10.1002/(sici)1520-6343(1999)5:2<117::aid-bspy5>3.0.co;2-k schema:sameAs https://app.dimensions.ai/details/publication/pub.1005752091
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1002/hed.23962 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024019656
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1002/jbio.201300190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031134214
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1006/excr.1993.1185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033990461
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1016/0030-4220(68)90437-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013527782
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1016/0304-4165(91)90172-d schema:sameAs https://app.dimensions.ai/details/publication/pub.1052688489
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1016/j.addr.2015.03.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000480879
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1016/j.cdp.2003.11.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038523471
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1016/j.oraloncology.2008.05.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012323208
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1016/s0304-3835(96)04450-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015421036
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1039/c2an16300d schema:sameAs https://app.dimensions.ai/details/publication/pub.1029863020
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1039/c2an35483g schema:sameAs https://app.dimensions.ai/details/publication/pub.1020634264
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1039/c2ay25544h schema:sameAs https://app.dimensions.ai/details/publication/pub.1035641215
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1039/c3an00256j schema:sameAs https://app.dimensions.ai/details/publication/pub.1008044405
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1080/05704920701829043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040216494
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1093/bioinformatics/btt084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041296281
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1096/fj.02-0752rev schema:sameAs https://app.dimensions.ai/details/publication/pub.1041814143
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1097/00024382-199912000-00012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050444766
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1111/j.1745-7270.2007.00320.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017684681
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1111/j.1749-6632.1960.tb49965.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050527222
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1117/1.jbo.17.10.105002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052929323
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1177/154411130301400105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020876508
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1371/journal.pone.0116491 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036450390
245 rdf:type schema:CreativeWork
246 https://doi.org/10.4028/www.scientific.net/amr.550-553.1304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072027226
247 rdf:type schema:CreativeWork
248 https://doi.org/10.4137/bic.s12951 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001303079
249 rdf:type schema:CreativeWork
250 https://www.grid.ac/institutes/grid.412041.2 schema:alternateName University of Bordeaux
251 schema:name University of Bordeaux – Inserm U1029 LAMC – Biophysics of Vascular Plasticity, 33608, Pessac, France
252 rdf:type schema:Organization
253 https://www.grid.ac/institutes/grid.416411.7 schema:alternateName North Bengal Medical College and Hospital
254 schema:name Department of Pathology, North Bengal Medical College and Hospital, 734012, Darjeeling, India
255 rdf:type schema:Organization
256 https://www.grid.ac/institutes/grid.429017.9 schema:alternateName Indian Institute of Technology Kharagpur
257 schema:name School of Medical Science and Technology, Indian Institute of Technology, 721302, Kharagpur, India
258 rdf:type schema:Organization
259 https://www.grid.ac/institutes/grid.444419.8 schema:alternateName National Institute of Technology Durgapur
260 schema:name Department of Chemistry, National Institute of Technology, 713209, Durgapur, India
261 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...