Unfolded partial least squares/residual bilinearization combined with the Successive Projections Algorithm for interval selection: enhanced excitation-emission fluorescence data modeling in ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-07

AUTHORS

Adriano de Araújo Gomes, Agustina V. Schenone, Héctor C. Goicoechea, Mario Cesar U. de Araújo

ABSTRACT

The use of the successive projections algorithm (SPA) for elimination of uninformative variables in interval selection, and unfold partial least squares regression (U-PLS) modeling of excitation-emission matrices (EEM), when under the inner filter effect (IFE) is reported for first time. Post-calibration residual bilinearization (RBL) was employed against events of unknown components in the test samples. The inner filter effect can originate changes in both the shape and intensity of analyte spectra, leading to trilinearity losses in both modes, and thus invalidating most multiway calibration methods. The algorithm presented in this paper was named iSPA-U-PLS/RBL. Both simulated and experimental data sets were used to compare the prediction capability during: (1) simulated EEM; and (2) quantitation of phenylephrine (PHE) in the presence of paracetamol (PAR) (or acetaminophen) in water samples. Test sets containing unexpected components were built in both systems [a single interference was taken into account in the simulated data set, while water samples were added with varying amounts of ibuprofen (IBU), and acetyl salicylic acid (ASA)]. The prediction results and figures of merit obtained with the new algorithm were compared with those obtained with U-PLS/RBL (without intervals selection), and with the well-known parallel factors analysis (PARAFAC). In all cases, U-PLS/RBL displayed better EEM handling capability in the presence of the inner filter effect compared with PARAFAC. In addition, iSPA-U-PLS/RBL improved the results obtained with the full U-PLS/RBL model, in this case demonstrating the potential of variable selection. More... »

PAGES

5649-5659

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00216-015-8745-8

DOI

http://dx.doi.org/10.1007/s00216-015-8745-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016556783

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26025549


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Acetaminophen", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aspirin", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fluorescence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ibuprofen", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Least-Squares Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Chemical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phenylephrine", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Federal University of Para\u00edba", 
          "id": "https://www.grid.ac/institutes/grid.411216.1", 
          "name": [
            "Departamento de Qu\u00edmica, Laborat\u00f3rio de Automa\u00e7\u00e3o e Instrumenta\u00e7\u00e3o em Qu\u00edmica Anal\u00edtica e Quimiometria (LAQA) Universidade Federal da Para\u00edba, CCEN, Caixa Postal 5093, CEP, 58051-970, Jo\u00e3o Pessoa, PB, Brasil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Ara\u00fajo Gomes", 
        "givenName": "Adriano", 
        "id": "sg:person.01351351160.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351351160.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of the Littoral", 
          "id": "https://www.grid.ac/institutes/grid.10798.37", 
          "name": [
            "Laboratorio de Desarrollo Anal\u00edtico y Quimiometr\u00eda (LADAQ), C\u00e1tedra de Qu\u00edmica Anal\u00edtica I, Facultad de Bioqu\u00edmica y Ciencias Biol\u00f3gicas, Universidad Nacional del Litoral, Ciudad Universitaria, S3000ZAA, Santa Fe, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schenone", 
        "givenName": "Agustina V.", 
        "id": "sg:person.01303540172.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01303540172.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of the Littoral", 
          "id": "https://www.grid.ac/institutes/grid.10798.37", 
          "name": [
            "Laboratorio de Desarrollo Anal\u00edtico y Quimiometr\u00eda (LADAQ), C\u00e1tedra de Qu\u00edmica Anal\u00edtica I, Facultad de Bioqu\u00edmica y Ciencias Biol\u00f3gicas, Universidad Nacional del Litoral, Ciudad Universitaria, S3000ZAA, Santa Fe, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goicoechea", 
        "givenName": "H\u00e9ctor C.", 
        "id": "sg:person.0754117262.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754117262.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Federal University of Para\u00edba", 
          "id": "https://www.grid.ac/institutes/grid.411216.1", 
          "name": [
            "Departamento de Qu\u00edmica, Laborat\u00f3rio de Automa\u00e7\u00e3o e Instrumenta\u00e7\u00e3o em Qu\u00edmica Anal\u00edtica e Quimiometria (LAQA) Universidade Federal da Para\u00edba, CCEN, Caixa Postal 5093, CEP, 58051-970, Jo\u00e3o Pessoa, PB, Brasil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Ara\u00fajo", 
        "givenName": "Mario Cesar U.", 
        "id": "sg:person.01115317635.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115317635.83"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0039-9140(02)00505-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002206292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0039-9140(02)00505-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002206292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c3ay41160e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005127607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemolab.2014.11.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005203932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-7439(97)00032-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005499634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00216-014-8442-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005780886", 
          "https://doi.org/10.1007/s00216-014-8442-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b603823a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005790590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.microc.2013.03.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009087482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cem.1360", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009540427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cem.1360", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009540427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0169-7439(95)00047-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010022624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1099-128x(199905/08)13:3/4<275::aid-cem543>3.0.co;2-b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012979957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1099-128x(199905/08)13:3/4<275::aid-cem543>3.0.co;2-b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012979957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.trac.2012.09.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014671100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cem.801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015924364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cem.927", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018092909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cem.927", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018092909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0003-2670(01)01182-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018415128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.talanta.2014.11.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020316462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.talanta.2014.11.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020316462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.talanta.2014.11.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020316462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.talanta.2014.11.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020316462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aca.2013.12.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022166411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemolab.2012.07.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024121840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-7439(98)00032-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024296027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.talanta.2013.01.063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024638397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c2ay25064k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025304702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00216-014-7657-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027678444", 
          "https://doi.org/10.1007/s00216-014-7657-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1099-128x(199601)10:1<47::aid-cem400>3.0.co;2-c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029561603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aca.2013.11.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033911269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemolab.2009.02.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034488287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aca.2006.11.070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036945830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cem.1180040109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037737482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cem.1180040109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037737482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.trac.2010.11.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038472013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00216-014-8268-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038846248", 
          "https://doi.org/10.1007/s00216-014-8268-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.talanta.2012.10.080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040026168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-7439(00)00113-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041081723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0039-9140(98)00271-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041169177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b903649k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041610195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b903649k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041610195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cem.790", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043592020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aca.2013.05.051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043670386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemolab.2012.05.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046253287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cem.2589", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046768419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac00255a014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054985602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac00293a054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054991432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac061369v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054998545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac061369v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054998545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac302996d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055003653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac801458a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055070367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac801458a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055070367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac9705733", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055074172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac9705733", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055074172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cr400455s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055420770"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-07", 
    "datePublishedReg": "2015-07-01", 
    "description": "The use of the successive projections algorithm (SPA) for elimination of uninformative variables in interval selection, and unfold partial least squares regression (U-PLS) modeling of excitation-emission matrices (EEM), when under the inner filter effect (IFE) is reported for first time. Post-calibration residual bilinearization (RBL) was employed against events of unknown components in the test samples. The inner filter effect can originate changes in both the shape and intensity of analyte spectra, leading to trilinearity losses in both modes, and thus invalidating most multiway calibration methods. The algorithm presented in this paper was named iSPA-U-PLS/RBL. Both simulated and experimental data sets were used to compare the prediction capability during: (1) simulated EEM; and (2) quantitation of phenylephrine (PHE) in the presence of paracetamol (PAR) (or acetaminophen) in water samples. Test sets containing unexpected components were built in both systems [a single interference was taken into account in the simulated data set, while water samples were added with varying amounts of ibuprofen (IBU), and acetyl salicylic acid (ASA)]. The prediction results and figures of merit obtained with the new algorithm were compared with those obtained with U-PLS/RBL (without intervals selection), and with the well-known parallel factors analysis (PARAFAC). In all cases, U-PLS/RBL displayed better EEM handling capability in the presence of the inner filter effect compared with PARAFAC. In addition, iSPA-U-PLS/RBL improved the results obtained with the full U-PLS/RBL model, in this case demonstrating the potential of variable selection. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00216-015-8745-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1357342", 
        "issn": [
          "1618-2642", 
          "1618-2650"
        ], 
        "name": "Analytical and Bioanalytical Chemistry", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "19", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "407"
      }
    ], 
    "name": "Unfolded partial least squares/residual bilinearization combined with the Successive Projections Algorithm for interval selection: enhanced excitation-emission fluorescence data modeling in the presence of the inner filter effect", 
    "pagination": "5649-5659", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4ee346ab3339ab05b1811e60cc3530f918a3343d10b186ec887b44e4b600368b"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26025549"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101134327"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00216-015-8745-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016556783"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00216-015-8745-8", 
      "https://app.dimensions.ai/details/publication/pub.1016556783"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T02:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000511.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00216-015-8745-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00216-015-8745-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00216-015-8745-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00216-015-8745-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00216-015-8745-8'


 

This table displays all metadata directly associated to this object as RDF triples.

257 TRIPLES      21 PREDICATES      80 URIs      29 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00216-015-8745-8 schema:about N3d50c617decc47ed944d35234f09c743
2 N4969580e6f624a5ab1deb3ae4a791e93
3 N7bfbd0b28c8047edb6d1a03a4be63a31
4 Nbe71a9a564f642259c5a49e262eec4e5
5 Nc7939a3a91d24af28a719a17ac28b04b
6 Nc83d7ee2ceef4710a7f68bd8376e0136
7 Nd632d9eeae384a09b32ca396bda5de48
8 Nf5d4326469c945dc902ace13f5de3106
9 anzsrc-for:08
10 anzsrc-for:0801
11 schema:author N2777352f582442a293b3f3021e6593fe
12 schema:citation sg:pub.10.1007/s00216-014-7657-3
13 sg:pub.10.1007/s00216-014-8268-8
14 sg:pub.10.1007/s00216-014-8442-z
15 https://doi.org/10.1002/(sici)1099-128x(199601)10:1<47::aid-cem400>3.0.co;2-c
16 https://doi.org/10.1002/(sici)1099-128x(199905/08)13:3/4<275::aid-cem543>3.0.co;2-b
17 https://doi.org/10.1002/cem.1180040109
18 https://doi.org/10.1002/cem.1360
19 https://doi.org/10.1002/cem.2589
20 https://doi.org/10.1002/cem.790
21 https://doi.org/10.1002/cem.801
22 https://doi.org/10.1002/cem.927
23 https://doi.org/10.1016/0169-7439(95)00047-x
24 https://doi.org/10.1016/j.aca.2006.11.070
25 https://doi.org/10.1016/j.aca.2013.05.051
26 https://doi.org/10.1016/j.aca.2013.11.009
27 https://doi.org/10.1016/j.aca.2013.12.022
28 https://doi.org/10.1016/j.chemolab.2009.02.005
29 https://doi.org/10.1016/j.chemolab.2012.05.014
30 https://doi.org/10.1016/j.chemolab.2012.07.010
31 https://doi.org/10.1016/j.chemolab.2014.11.013
32 https://doi.org/10.1016/j.microc.2013.03.015
33 https://doi.org/10.1016/j.talanta.2012.10.080
34 https://doi.org/10.1016/j.talanta.2013.01.063
35 https://doi.org/10.1016/j.talanta.2014.11.022
36 https://doi.org/10.1016/j.trac.2010.11.018
37 https://doi.org/10.1016/j.trac.2012.09.006
38 https://doi.org/10.1016/s0003-2670(01)01182-5
39 https://doi.org/10.1016/s0039-9140(02)00505-2
40 https://doi.org/10.1016/s0039-9140(98)00271-9
41 https://doi.org/10.1016/s0169-7439(00)00113-1
42 https://doi.org/10.1016/s0169-7439(97)00032-4
43 https://doi.org/10.1016/s0169-7439(98)00032-x
44 https://doi.org/10.1021/ac00255a014
45 https://doi.org/10.1021/ac00293a054
46 https://doi.org/10.1021/ac061369v
47 https://doi.org/10.1021/ac302996d
48 https://doi.org/10.1021/ac801458a
49 https://doi.org/10.1021/ac9705733
50 https://doi.org/10.1021/cr400455s
51 https://doi.org/10.1039/b603823a
52 https://doi.org/10.1039/b903649k
53 https://doi.org/10.1039/c2ay25064k
54 https://doi.org/10.1039/c3ay41160e
55 schema:datePublished 2015-07
56 schema:datePublishedReg 2015-07-01
57 schema:description The use of the successive projections algorithm (SPA) for elimination of uninformative variables in interval selection, and unfold partial least squares regression (U-PLS) modeling of excitation-emission matrices (EEM), when under the inner filter effect (IFE) is reported for first time. Post-calibration residual bilinearization (RBL) was employed against events of unknown components in the test samples. The inner filter effect can originate changes in both the shape and intensity of analyte spectra, leading to trilinearity losses in both modes, and thus invalidating most multiway calibration methods. The algorithm presented in this paper was named iSPA-U-PLS/RBL. Both simulated and experimental data sets were used to compare the prediction capability during: (1) simulated EEM; and (2) quantitation of phenylephrine (PHE) in the presence of paracetamol (PAR) (or acetaminophen) in water samples. Test sets containing unexpected components were built in both systems [a single interference was taken into account in the simulated data set, while water samples were added with varying amounts of ibuprofen (IBU), and acetyl salicylic acid (ASA)]. The prediction results and figures of merit obtained with the new algorithm were compared with those obtained with U-PLS/RBL (without intervals selection), and with the well-known parallel factors analysis (PARAFAC). In all cases, U-PLS/RBL displayed better EEM handling capability in the presence of the inner filter effect compared with PARAFAC. In addition, iSPA-U-PLS/RBL improved the results obtained with the full U-PLS/RBL model, in this case demonstrating the potential of variable selection.
58 schema:genre research_article
59 schema:inLanguage en
60 schema:isAccessibleForFree false
61 schema:isPartOf N1657712caeb34077a3526cb84ffc0c59
62 N49c38dcfb3dd443baed54629b6311076
63 sg:journal.1357342
64 schema:name Unfolded partial least squares/residual bilinearization combined with the Successive Projections Algorithm for interval selection: enhanced excitation-emission fluorescence data modeling in the presence of the inner filter effect
65 schema:pagination 5649-5659
66 schema:productId N03fd4b7e40184fcd9462898e7b0a7ca9
67 N3a0c03d1b4cd493f98ca12388068d35f
68 N3c95d21452f84c1987adeb17f0091578
69 Nb18c4959c7924005abce9be4190b37af
70 Nb7fc92e2f8504814b3e79df45006b3aa
71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016556783
72 https://doi.org/10.1007/s00216-015-8745-8
73 schema:sdDatePublished 2019-04-11T02:00
74 schema:sdLicense https://scigraph.springernature.com/explorer/license/
75 schema:sdPublisher N11b6cd3cbf2b4c3488068bb9479fe518
76 schema:url http://link.springer.com/10.1007%2Fs00216-015-8745-8
77 sgo:license sg:explorer/license/
78 sgo:sdDataset articles
79 rdf:type schema:ScholarlyArticle
80 N03fd4b7e40184fcd9462898e7b0a7ca9 schema:name doi
81 schema:value 10.1007/s00216-015-8745-8
82 rdf:type schema:PropertyValue
83 N11b6cd3cbf2b4c3488068bb9479fe518 schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 N1657712caeb34077a3526cb84ffc0c59 schema:volumeNumber 407
86 rdf:type schema:PublicationVolume
87 N2777352f582442a293b3f3021e6593fe rdf:first sg:person.01351351160.24
88 rdf:rest N38d2605efbe84e1cb16aaba3dbe49e42
89 N277df15983a54480bca91c9e8238953d rdf:first sg:person.0754117262.29
90 rdf:rest N9d8de161055143c193af77ec0924652a
91 N38d2605efbe84e1cb16aaba3dbe49e42 rdf:first sg:person.01303540172.07
92 rdf:rest N277df15983a54480bca91c9e8238953d
93 N3a0c03d1b4cd493f98ca12388068d35f schema:name pubmed_id
94 schema:value 26025549
95 rdf:type schema:PropertyValue
96 N3c95d21452f84c1987adeb17f0091578 schema:name nlm_unique_id
97 schema:value 101134327
98 rdf:type schema:PropertyValue
99 N3d50c617decc47ed944d35234f09c743 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Aspirin
101 rdf:type schema:DefinedTerm
102 N4969580e6f624a5ab1deb3ae4a791e93 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Fluorescence
104 rdf:type schema:DefinedTerm
105 N49c38dcfb3dd443baed54629b6311076 schema:issueNumber 19
106 rdf:type schema:PublicationIssue
107 N7bfbd0b28c8047edb6d1a03a4be63a31 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Least-Squares Analysis
109 rdf:type schema:DefinedTerm
110 N9d8de161055143c193af77ec0924652a rdf:first sg:person.01115317635.83
111 rdf:rest rdf:nil
112 Nb18c4959c7924005abce9be4190b37af schema:name dimensions_id
113 schema:value pub.1016556783
114 rdf:type schema:PropertyValue
115 Nb7fc92e2f8504814b3e79df45006b3aa schema:name readcube_id
116 schema:value 4ee346ab3339ab05b1811e60cc3530f918a3343d10b186ec887b44e4b600368b
117 rdf:type schema:PropertyValue
118 Nbe71a9a564f642259c5a49e262eec4e5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Ibuprofen
120 rdf:type schema:DefinedTerm
121 Nc7939a3a91d24af28a719a17ac28b04b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Phenylephrine
123 rdf:type schema:DefinedTerm
124 Nc83d7ee2ceef4710a7f68bd8376e0136 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Algorithms
126 rdf:type schema:DefinedTerm
127 Nd632d9eeae384a09b32ca396bda5de48 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Models, Chemical
129 rdf:type schema:DefinedTerm
130 Nf5d4326469c945dc902ace13f5de3106 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Acetaminophen
132 rdf:type schema:DefinedTerm
133 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
134 schema:name Information and Computing Sciences
135 rdf:type schema:DefinedTerm
136 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
137 schema:name Artificial Intelligence and Image Processing
138 rdf:type schema:DefinedTerm
139 sg:journal.1357342 schema:issn 1618-2642
140 1618-2650
141 schema:name Analytical and Bioanalytical Chemistry
142 rdf:type schema:Periodical
143 sg:person.01115317635.83 schema:affiliation https://www.grid.ac/institutes/grid.411216.1
144 schema:familyName de Araújo
145 schema:givenName Mario Cesar U.
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115317635.83
147 rdf:type schema:Person
148 sg:person.01303540172.07 schema:affiliation https://www.grid.ac/institutes/grid.10798.37
149 schema:familyName Schenone
150 schema:givenName Agustina V.
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01303540172.07
152 rdf:type schema:Person
153 sg:person.01351351160.24 schema:affiliation https://www.grid.ac/institutes/grid.411216.1
154 schema:familyName de Araújo Gomes
155 schema:givenName Adriano
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351351160.24
157 rdf:type schema:Person
158 sg:person.0754117262.29 schema:affiliation https://www.grid.ac/institutes/grid.10798.37
159 schema:familyName Goicoechea
160 schema:givenName Héctor C.
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754117262.29
162 rdf:type schema:Person
163 sg:pub.10.1007/s00216-014-7657-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027678444
164 https://doi.org/10.1007/s00216-014-7657-3
165 rdf:type schema:CreativeWork
166 sg:pub.10.1007/s00216-014-8268-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038846248
167 https://doi.org/10.1007/s00216-014-8268-8
168 rdf:type schema:CreativeWork
169 sg:pub.10.1007/s00216-014-8442-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1005780886
170 https://doi.org/10.1007/s00216-014-8442-z
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1002/(sici)1099-128x(199601)10:1<47::aid-cem400>3.0.co;2-c schema:sameAs https://app.dimensions.ai/details/publication/pub.1029561603
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1002/(sici)1099-128x(199905/08)13:3/4<275::aid-cem543>3.0.co;2-b schema:sameAs https://app.dimensions.ai/details/publication/pub.1012979957
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1002/cem.1180040109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037737482
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1002/cem.1360 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009540427
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1002/cem.2589 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046768419
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1002/cem.790 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043592020
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1002/cem.801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015924364
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1002/cem.927 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018092909
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/0169-7439(95)00047-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1010022624
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.aca.2006.11.070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036945830
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/j.aca.2013.05.051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043670386
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/j.aca.2013.11.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033911269
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/j.aca.2013.12.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022166411
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/j.chemolab.2009.02.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034488287
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/j.chemolab.2012.05.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046253287
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/j.chemolab.2012.07.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024121840
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1016/j.chemolab.2014.11.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005203932
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1016/j.microc.2013.03.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009087482
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1016/j.talanta.2012.10.080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040026168
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1016/j.talanta.2013.01.063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024638397
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1016/j.talanta.2014.11.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020316462
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1016/j.trac.2010.11.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038472013
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1016/j.trac.2012.09.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014671100
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1016/s0003-2670(01)01182-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018415128
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1016/s0039-9140(02)00505-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002206292
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1016/s0039-9140(98)00271-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041169177
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1016/s0169-7439(00)00113-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041081723
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1016/s0169-7439(97)00032-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005499634
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1016/s0169-7439(98)00032-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1024296027
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1021/ac00255a014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054985602
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1021/ac00293a054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054991432
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1021/ac061369v schema:sameAs https://app.dimensions.ai/details/publication/pub.1054998545
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1021/ac302996d schema:sameAs https://app.dimensions.ai/details/publication/pub.1055003653
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1021/ac801458a schema:sameAs https://app.dimensions.ai/details/publication/pub.1055070367
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1021/ac9705733 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055074172
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1021/cr400455s schema:sameAs https://app.dimensions.ai/details/publication/pub.1055420770
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1039/b603823a schema:sameAs https://app.dimensions.ai/details/publication/pub.1005790590
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1039/b903649k schema:sameAs https://app.dimensions.ai/details/publication/pub.1041610195
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1039/c2ay25064k schema:sameAs https://app.dimensions.ai/details/publication/pub.1025304702
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1039/c3ay41160e schema:sameAs https://app.dimensions.ai/details/publication/pub.1005127607
251 rdf:type schema:CreativeWork
252 https://www.grid.ac/institutes/grid.10798.37 schema:alternateName National University of the Littoral
253 schema:name Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, S3000ZAA, Santa Fe, Argentina
254 rdf:type schema:Organization
255 https://www.grid.ac/institutes/grid.411216.1 schema:alternateName Federal University of Paraíba
256 schema:name Departamento de Química, Laboratório de Automação e Instrumentação em Química Analítica e Quimiometria (LAQA) Universidade Federal da Paraíba, CCEN, Caixa Postal 5093, CEP, 58051-970, João Pessoa, PB, Brasil
257 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...