A new modeling strategy for third-order fast high-performance liquid chromatographic data with fluorescence detection. Quantitation of fluoroquinolones in water samples View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-03

AUTHORS

Mirta R. Alcaráz, Santiago A. Bortolato, Héctor C. Goicoechea, Alejandro C. Olivieri

ABSTRACT

Matrix augmentation is regularly employed in extended multivariate curve resolution-alternating least-squares (MCR-ALS), as applied to analytical calibration based on second- and third-order data. However, this highly useful concept has almost no correspondence in parallel factor analysis (PARAFAC) of third-order data. In the present work, we propose a strategy to process third-order chromatographic data with matrix fluorescence detection, based on an Augmented PARAFAC model. The latter involves decomposition of a three-way data array augmented along the elution time mode with data for the calibration samples and for each of the test samples. A set of excitation-emission fluorescence matrices, measured at different chromatographic elution times for drinking water samples, containing three fluoroquinolones and uncalibrated interferences, were evaluated using this approach. Augmented PARAFAC exploits the second-order advantage, even in the presence of significant changes in chromatographic profiles from run to run. The obtained relative errors of prediction were ca. 10 % for ofloxacin, ciprofloxacin, and danofloxacin, with a significant enhancement in analytical figures of merit in comparison with previous reports. The results are compared with those furnished by MCR-ALS. More... »

PAGES

1999-2011

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00216-014-8442-z

DOI

http://dx.doi.org/10.1007/s00216-014-8442-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005780886

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25700547


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0301", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Analytical Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chromatography, High Pressure Liquid", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fluoroquinolones", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Spectrometry, Fluorescence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Water Pollutants, Chemical", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National University of the Littoral", 
          "id": "https://www.grid.ac/institutes/grid.10798.37", 
          "name": [
            "Laboratorio de Desarrollo Anal\u00edtico y Quimiometr\u00eda (LADAQ), C\u00e1tedra de Qu\u00edmica Anal\u00edtica I, Facultad de Bioqu\u00edmica y Ciencias Biol\u00f3gicas, Universidad Nacional del Litoral-CONICET, Ciudad Universitaria, 3000, Santa Fe, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alcar\u00e1z", 
        "givenName": "Mirta R.", 
        "id": "sg:person.01276403324.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276403324.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Rosario", 
          "id": "https://www.grid.ac/institutes/grid.10814.3c", 
          "name": [
            "Departamento de Qu\u00edmica Anal\u00edtica, Facultad de Ciencias Bioqu\u00edmicas y Farmac\u00e9uticas, Universidad Nacional de Rosario, Instituto de Qu\u00edmica de Rosario (IQUIR-CONICET), Suipacha 531, S2002LRK, Rosario, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bortolato", 
        "givenName": "Santiago A.", 
        "id": "sg:person.01221107003.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221107003.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of the Littoral", 
          "id": "https://www.grid.ac/institutes/grid.10798.37", 
          "name": [
            "Laboratorio de Desarrollo Anal\u00edtico y Quimiometr\u00eda (LADAQ), C\u00e1tedra de Qu\u00edmica Anal\u00edtica I, Facultad de Bioqu\u00edmica y Ciencias Biol\u00f3gicas, Universidad Nacional del Litoral-CONICET, Ciudad Universitaria, 3000, Santa Fe, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goicoechea", 
        "givenName": "H\u00e9ctor C.", 
        "id": "sg:person.0754117262.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754117262.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Rosario", 
          "id": "https://www.grid.ac/institutes/grid.10814.3c", 
          "name": [
            "Departamento de Qu\u00edmica Anal\u00edtica, Facultad de Ciencias Bioqu\u00edmicas y Farmac\u00e9uticas, Universidad Nacional de Rosario, Instituto de Qu\u00edmica de Rosario (IQUIR-CONICET), Suipacha 531, S2002LRK, Rosario, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Olivieri", 
        "givenName": "Alejandro C.", 
        "id": "sg:person.0630070606.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0630070606.49"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.aca.2013.12.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000700165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chroma.2009.04.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002300639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemolab.2014.11.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005203932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-7439(97)00032-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005499634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0169-7439(95)00047-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010022624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00216-008-2576-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016823775", 
          "https://doi.org/10.1007/s00216-008-2576-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aca.2014.07.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022425321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0169-7439(94)85050-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027477071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00216-014-7657-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027678444", 
          "https://doi.org/10.1007/s00216-014-7657-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.trac.2013.04.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029238546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aca.2013.11.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033911269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aca.2013.03.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034475425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cem.1386", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038286842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.trac.2010.11.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038472013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jssc.200900753", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039911840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jssc.200900753", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039911840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aca.2012.08.042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045192793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cem.1051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048307907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.trac.2007.04.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048561911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemolab.2013.04.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049930483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac00014a016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054966100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac00087a718", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054971205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac201799r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055001967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac201799r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055001967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac202268k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055002126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac3019284", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055003251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac800692c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055070024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac800692c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055070024"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-03", 
    "datePublishedReg": "2015-03-01", 
    "description": "Matrix augmentation is regularly employed in extended multivariate curve resolution-alternating least-squares (MCR-ALS), as applied to analytical calibration based on second- and third-order data. However, this highly useful concept has almost no correspondence in parallel factor analysis (PARAFAC) of third-order data. In the present work, we propose a strategy to process third-order chromatographic data with matrix fluorescence detection, based on an Augmented PARAFAC model. The latter involves decomposition of a three-way data array augmented along the elution time mode with data for the calibration samples and for each of the test samples. A set of excitation-emission fluorescence matrices, measured at different chromatographic elution times for drinking water samples, containing three fluoroquinolones and uncalibrated interferences, were evaluated using this approach. Augmented PARAFAC exploits the second-order advantage, even in the presence of significant changes in chromatographic profiles from run to run. The obtained relative errors of prediction were ca. 10\u00a0% for ofloxacin, ciprofloxacin, and danofloxacin, with a significant enhancement in analytical figures of merit in comparison with previous reports. The results are compared with those furnished by MCR-ALS. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00216-014-8442-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1357342", 
        "issn": [
          "1618-2642", 
          "1618-2650"
        ], 
        "name": "Analytical and Bioanalytical Chemistry", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "407"
      }
    ], 
    "name": "A new modeling strategy for third-order fast high-performance liquid chromatographic data with fluorescence detection. Quantitation of fluoroquinolones in water samples", 
    "pagination": "1999-2011", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1b8a9e93e779efd4516bb92b67e6f3e0043950a8344c9e34dc1691c173b35b7e"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25700547"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101134327"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00216-014-8442-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005780886"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00216-014-8442-z", 
      "https://app.dimensions.ai/details/publication/pub.1005780886"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000480.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00216-014-8442-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00216-014-8442-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00216-014-8442-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00216-014-8442-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00216-014-8442-z'


 

This table displays all metadata directly associated to this object as RDF triples.

186 TRIPLES      21 PREDICATES      58 URIs      25 LITERALS      13 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00216-014-8442-z schema:about N6ce0f5ca5c704137a0aa63ce3e26fb1c
2 Na29114dde4d846de91e3a0a90289909e
3 Nfb8158b6546f407fbb4e98926b8df6bb
4 Nfdc630d681b541cd8423bc6e381b273d
5 anzsrc-for:03
6 anzsrc-for:0301
7 schema:author N6555282a6bfd4be8988625b3bd159682
8 schema:citation sg:pub.10.1007/s00216-008-2576-9
9 sg:pub.10.1007/s00216-014-7657-3
10 https://doi.org/10.1002/cem.1051
11 https://doi.org/10.1002/cem.1386
12 https://doi.org/10.1002/jssc.200900753
13 https://doi.org/10.1016/0169-7439(94)85050-x
14 https://doi.org/10.1016/0169-7439(95)00047-x
15 https://doi.org/10.1016/j.aca.2012.08.042
16 https://doi.org/10.1016/j.aca.2013.03.048
17 https://doi.org/10.1016/j.aca.2013.11.009
18 https://doi.org/10.1016/j.aca.2013.12.011
19 https://doi.org/10.1016/j.aca.2014.07.007
20 https://doi.org/10.1016/j.chemolab.2013.04.005
21 https://doi.org/10.1016/j.chemolab.2014.11.013
22 https://doi.org/10.1016/j.chroma.2009.04.033
23 https://doi.org/10.1016/j.trac.2007.04.006
24 https://doi.org/10.1016/j.trac.2010.11.018
25 https://doi.org/10.1016/j.trac.2013.04.010
26 https://doi.org/10.1016/s0169-7439(97)00032-4
27 https://doi.org/10.1021/ac00014a016
28 https://doi.org/10.1021/ac00087a718
29 https://doi.org/10.1021/ac201799r
30 https://doi.org/10.1021/ac202268k
31 https://doi.org/10.1021/ac3019284
32 https://doi.org/10.1021/ac800692c
33 schema:datePublished 2015-03
34 schema:datePublishedReg 2015-03-01
35 schema:description Matrix augmentation is regularly employed in extended multivariate curve resolution-alternating least-squares (MCR-ALS), as applied to analytical calibration based on second- and third-order data. However, this highly useful concept has almost no correspondence in parallel factor analysis (PARAFAC) of third-order data. In the present work, we propose a strategy to process third-order chromatographic data with matrix fluorescence detection, based on an Augmented PARAFAC model. The latter involves decomposition of a three-way data array augmented along the elution time mode with data for the calibration samples and for each of the test samples. A set of excitation-emission fluorescence matrices, measured at different chromatographic elution times for drinking water samples, containing three fluoroquinolones and uncalibrated interferences, were evaluated using this approach. Augmented PARAFAC exploits the second-order advantage, even in the presence of significant changes in chromatographic profiles from run to run. The obtained relative errors of prediction were ca. 10 % for ofloxacin, ciprofloxacin, and danofloxacin, with a significant enhancement in analytical figures of merit in comparison with previous reports. The results are compared with those furnished by MCR-ALS.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree false
39 schema:isPartOf N566f0267fc0743dab773c33a1a887b1a
40 N8cac3a6573c74c9481816f70d4848048
41 sg:journal.1357342
42 schema:name A new modeling strategy for third-order fast high-performance liquid chromatographic data with fluorescence detection. Quantitation of fluoroquinolones in water samples
43 schema:pagination 1999-2011
44 schema:productId N0afa99921f33425eb71eb4e3cec0ad57
45 Nb1ac14d937e24966b2ece9edd4956db9
46 Nbe84f7f1291a4456a9dd05146000bc0c
47 Nc2e3609f557a43648c5d08aa2299be64
48 Nff4a7a8c0087459588462c54b88b4b9c
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005780886
50 https://doi.org/10.1007/s00216-014-8442-z
51 schema:sdDatePublished 2019-04-10T14:00
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher Ndc9a62b16e494af8b8fabab3a610aa19
54 schema:url http://link.springer.com/10.1007/s00216-014-8442-z
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N0afa99921f33425eb71eb4e3cec0ad57 schema:name dimensions_id
59 schema:value pub.1005780886
60 rdf:type schema:PropertyValue
61 N27d04336d6df4760bc3e6f2e06a309e7 rdf:first sg:person.0630070606.49
62 rdf:rest rdf:nil
63 N566f0267fc0743dab773c33a1a887b1a schema:issueNumber 7
64 rdf:type schema:PublicationIssue
65 N6555282a6bfd4be8988625b3bd159682 rdf:first sg:person.01276403324.55
66 rdf:rest Na3d5bae8f1d24a4fa5035f52fdaa2fe8
67 N6bce0b26b3514e589896cd61423270fc rdf:first sg:person.0754117262.29
68 rdf:rest N27d04336d6df4760bc3e6f2e06a309e7
69 N6ce0f5ca5c704137a0aa63ce3e26fb1c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
70 schema:name Fluoroquinolones
71 rdf:type schema:DefinedTerm
72 N8cac3a6573c74c9481816f70d4848048 schema:volumeNumber 407
73 rdf:type schema:PublicationVolume
74 Na29114dde4d846de91e3a0a90289909e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Water Pollutants, Chemical
76 rdf:type schema:DefinedTerm
77 Na3d5bae8f1d24a4fa5035f52fdaa2fe8 rdf:first sg:person.01221107003.35
78 rdf:rest N6bce0b26b3514e589896cd61423270fc
79 Nb1ac14d937e24966b2ece9edd4956db9 schema:name readcube_id
80 schema:value 1b8a9e93e779efd4516bb92b67e6f3e0043950a8344c9e34dc1691c173b35b7e
81 rdf:type schema:PropertyValue
82 Nbe84f7f1291a4456a9dd05146000bc0c schema:name doi
83 schema:value 10.1007/s00216-014-8442-z
84 rdf:type schema:PropertyValue
85 Nc2e3609f557a43648c5d08aa2299be64 schema:name pubmed_id
86 schema:value 25700547
87 rdf:type schema:PropertyValue
88 Ndc9a62b16e494af8b8fabab3a610aa19 schema:name Springer Nature - SN SciGraph project
89 rdf:type schema:Organization
90 Nfb8158b6546f407fbb4e98926b8df6bb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Spectrometry, Fluorescence
92 rdf:type schema:DefinedTerm
93 Nfdc630d681b541cd8423bc6e381b273d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Chromatography, High Pressure Liquid
95 rdf:type schema:DefinedTerm
96 Nff4a7a8c0087459588462c54b88b4b9c schema:name nlm_unique_id
97 schema:value 101134327
98 rdf:type schema:PropertyValue
99 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
100 schema:name Chemical Sciences
101 rdf:type schema:DefinedTerm
102 anzsrc-for:0301 schema:inDefinedTermSet anzsrc-for:
103 schema:name Analytical Chemistry
104 rdf:type schema:DefinedTerm
105 sg:journal.1357342 schema:issn 1618-2642
106 1618-2650
107 schema:name Analytical and Bioanalytical Chemistry
108 rdf:type schema:Periodical
109 sg:person.01221107003.35 schema:affiliation https://www.grid.ac/institutes/grid.10814.3c
110 schema:familyName Bortolato
111 schema:givenName Santiago A.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221107003.35
113 rdf:type schema:Person
114 sg:person.01276403324.55 schema:affiliation https://www.grid.ac/institutes/grid.10798.37
115 schema:familyName Alcaráz
116 schema:givenName Mirta R.
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276403324.55
118 rdf:type schema:Person
119 sg:person.0630070606.49 schema:affiliation https://www.grid.ac/institutes/grid.10814.3c
120 schema:familyName Olivieri
121 schema:givenName Alejandro C.
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0630070606.49
123 rdf:type schema:Person
124 sg:person.0754117262.29 schema:affiliation https://www.grid.ac/institutes/grid.10798.37
125 schema:familyName Goicoechea
126 schema:givenName Héctor C.
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754117262.29
128 rdf:type schema:Person
129 sg:pub.10.1007/s00216-008-2576-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016823775
130 https://doi.org/10.1007/s00216-008-2576-9
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/s00216-014-7657-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027678444
133 https://doi.org/10.1007/s00216-014-7657-3
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1002/cem.1051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048307907
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1002/cem.1386 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038286842
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1002/jssc.200900753 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039911840
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/0169-7439(94)85050-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1027477071
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/0169-7439(95)00047-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1010022624
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.aca.2012.08.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045192793
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.aca.2013.03.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034475425
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.aca.2013.11.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033911269
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.aca.2013.12.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000700165
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.aca.2014.07.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022425321
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.chemolab.2013.04.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049930483
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.chemolab.2014.11.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005203932
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.chroma.2009.04.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002300639
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.trac.2007.04.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048561911
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.trac.2010.11.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038472013
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.trac.2013.04.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029238546
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/s0169-7439(97)00032-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005499634
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1021/ac00014a016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054966100
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1021/ac00087a718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054971205
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1021/ac201799r schema:sameAs https://app.dimensions.ai/details/publication/pub.1055001967
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1021/ac202268k schema:sameAs https://app.dimensions.ai/details/publication/pub.1055002126
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1021/ac3019284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055003251
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1021/ac800692c schema:sameAs https://app.dimensions.ai/details/publication/pub.1055070024
180 rdf:type schema:CreativeWork
181 https://www.grid.ac/institutes/grid.10798.37 schema:alternateName National University of the Littoral
182 schema:name Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Ciudad Universitaria, 3000, Santa Fe, Argentina
183 rdf:type schema:Organization
184 https://www.grid.ac/institutes/grid.10814.3c schema:alternateName National University of Rosario
185 schema:name Departamento de Química Analítica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Instituto de Química de Rosario (IQUIR-CONICET), Suipacha 531, S2002LRK, Rosario, Argentina
186 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...