Ultrafast quantitation of six quinolones in water samples by second-order capillary electrophoresis data modeling with multivariate curve resolution–alternating least squares View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-04

AUTHORS

Mirta R. Alcaráz, Luciana Vera-Candioti, María J. Culzoni, Héctor C. Goicoechea

ABSTRACT

This paper presents the development of a capillary electrophoresis method with diode array detector coupled to multivariate curve resolution-alternating least squares (MCR-ALS) to conduct the resolution and quantitation of a mixture of six quinolones in the presence of several unexpected components. Overlapping of time profiles between analytes and water matrix interferences were mathematically solved by data modeling with the well-known MCR-ALS algorithm. With the aim of overcoming the drawback originated by two compounds with similar spectra, a special strategy was implemented to model the complete electropherogram instead of dividing the data in the region as usually performed in previous works. The method was first applied to quantitate analytes in standard mixtures which were randomly prepared in ultrapure water. Then, tap water samples spiked with several interferences were analyzed. Recoveries between 76.7 and 125 % and limits of detection between 5 and 18 μg L(-1) were achieved. More... »

PAGES

2571-2580

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00216-014-7657-3

DOI

http://dx.doi.org/10.1007/s00216-014-7657-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027678444

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24566760


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0301", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Analytical Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drinking Water", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electrophoresis, Capillary", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Least-Squares Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Multivariate Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Quinolones", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Water Pollutants, Chemical", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National University of the Littoral", 
          "id": "https://www.grid.ac/institutes/grid.10798.37", 
          "name": [
            "Laboratorio de Desarrollo Anal\u00edtico y Quimiometr\u00eda (LADAQ), C\u00e1tedra de Qu\u00edmica Anal\u00edtica I, Facultad de Bioqu\u00edmica y Ciencias Biol\u00f3gicas, Universidad Nacional del Litoral\u2013CONICET, Ciudad Universitaria, 3000, Santa Fe, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alcar\u00e1z", 
        "givenName": "Mirta R.", 
        "id": "sg:person.01276403324.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276403324.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of the Littoral", 
          "id": "https://www.grid.ac/institutes/grid.10798.37", 
          "name": [
            "Laboratorio de Desarrollo Anal\u00edtico y Quimiometr\u00eda (LADAQ), C\u00e1tedra de Qu\u00edmica Anal\u00edtica I, Facultad de Bioqu\u00edmica y Ciencias Biol\u00f3gicas, Universidad Nacional del Litoral\u2013CONICET, Ciudad Universitaria, 3000, Santa Fe, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vera-Candioti", 
        "givenName": "Luciana", 
        "id": "sg:person.01102743365.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01102743365.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of the Littoral", 
          "id": "https://www.grid.ac/institutes/grid.10798.37", 
          "name": [
            "Laboratorio de Desarrollo Anal\u00edtico y Quimiometr\u00eda (LADAQ), C\u00e1tedra de Qu\u00edmica Anal\u00edtica I, Facultad de Bioqu\u00edmica y Ciencias Biol\u00f3gicas, Universidad Nacional del Litoral\u2013CONICET, Ciudad Universitaria, 3000, Santa Fe, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Culzoni", 
        "givenName": "Mar\u00eda J.", 
        "id": "sg:person.01141147051.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141147051.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of the Littoral", 
          "id": "https://www.grid.ac/institutes/grid.10798.37", 
          "name": [
            "Laboratorio de Desarrollo Anal\u00edtico y Quimiometr\u00eda (LADAQ), C\u00e1tedra de Qu\u00edmica Anal\u00edtica I, Facultad de Bioqu\u00edmica y Ciencias Biol\u00f3gicas, Universidad Nacional del Litoral\u2013CONICET, Ciudad Universitaria, 3000, Santa Fe, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goicoechea", 
        "givenName": "H\u00e9ctor C.", 
        "id": "sg:person.0754117262.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754117262.29"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/jssc.200301515", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003979119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sigpro.2005.02.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004837103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aca.2008.03.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004906152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac034800e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004994259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac034800e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004994259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chroma.2007.11.091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005054072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jssc.200301514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008378477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-044452701-1.00055-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009325425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0169-7439(95)00047-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010022624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00216-008-2576-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016823775", 
          "https://doi.org/10.1007/s00216-008-2576-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scitotenv.2012.11.057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023010882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0165-9936(03)01105-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023779108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1351/pac199870040993", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024184707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/elps.200800400", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026714113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemosphere.2012.04.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028051891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.trac.2013.04.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029238546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00216-010-4071-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030852321", 
          "https://doi.org/10.1007/s00216-010-4071-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aca.2012.12.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032488277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecoenv.2004.11.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036354884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.trac.2010.11.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038472013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jssc.200900753", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039911840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jssc.200900753", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039911840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chroma.2011.06.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044414522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aca.2012.08.042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045192793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.trac.2007.04.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048561911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/elps.200410079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048795208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0731-7085(00)00529-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050104810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aca.2009.07.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053200957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac00014a016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054966100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac00087a718", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054971205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac3019284", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055003251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac60214a047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055048783"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-04", 
    "datePublishedReg": "2014-04-01", 
    "description": "This paper presents the development of a capillary electrophoresis method with diode array detector coupled to multivariate curve resolution-alternating least squares (MCR-ALS) to conduct the resolution and quantitation of a mixture of six quinolones in the presence of several unexpected components. Overlapping of time profiles between analytes and water matrix interferences were mathematically solved by data modeling with the well-known MCR-ALS algorithm. With the aim of overcoming the drawback originated by two compounds with similar spectra, a special strategy was implemented to model the complete electropherogram instead of dividing the data in the region as usually performed in previous works. The method was first applied to quantitate analytes in standard mixtures which were randomly prepared in ultrapure water. Then, tap water samples spiked with several interferences were analyzed. Recoveries between 76.7 and 125 % and limits of detection between 5 and 18 \u03bcg L(-1) were achieved.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00216-014-7657-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1357342", 
        "issn": [
          "1618-2642", 
          "1618-2650"
        ], 
        "name": "Analytical and Bioanalytical Chemistry", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "406"
      }
    ], 
    "name": "Ultrafast quantitation of six quinolones in water samples by second-order capillary electrophoresis data modeling with multivariate curve resolution\u2013alternating least squares", 
    "pagination": "2571-2580", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "83daeb094cca87b227591c2209136eec12f01f23d9b42e7d00d5b70f262a5d63"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24566760"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101134327"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00216-014-7657-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027678444"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00216-014-7657-3", 
      "https://app.dimensions.ai/details/publication/pub.1027678444"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000481.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00216-014-7657-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00216-014-7657-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00216-014-7657-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00216-014-7657-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00216-014-7657-3'


 

This table displays all metadata directly associated to this object as RDF triples.

206 TRIPLES      21 PREDICATES      65 URIs      27 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00216-014-7657-3 schema:about N407da1f2b8cb42988f7972c268fe7af5
2 N44733c32b2c040acb56972a50b984664
3 Nab3c11302db34195ae2c1d5adea2c90c
4 Naf586eee99b64c9cb53a4fd543f68924
5 Ncda7d055dda44dffad849d1360f66544
6 Ne2f7888370d24c30a698cbcc70fb95e4
7 anzsrc-for:03
8 anzsrc-for:0301
9 schema:author N7d8346cbbfca41d4926ee259e67e253f
10 schema:citation sg:pub.10.1007/s00216-008-2576-9
11 sg:pub.10.1007/s00216-010-4071-3
12 https://doi.org/10.1002/elps.200410079
13 https://doi.org/10.1002/elps.200800400
14 https://doi.org/10.1002/jssc.200301514
15 https://doi.org/10.1002/jssc.200301515
16 https://doi.org/10.1002/jssc.200900753
17 https://doi.org/10.1016/0169-7439(95)00047-x
18 https://doi.org/10.1016/b978-044452701-1.00055-7
19 https://doi.org/10.1016/j.aca.2008.03.013
20 https://doi.org/10.1016/j.aca.2009.07.031
21 https://doi.org/10.1016/j.aca.2012.08.042
22 https://doi.org/10.1016/j.aca.2012.12.014
23 https://doi.org/10.1016/j.chemosphere.2012.04.037
24 https://doi.org/10.1016/j.chroma.2007.11.091
25 https://doi.org/10.1016/j.chroma.2011.06.031
26 https://doi.org/10.1016/j.ecoenv.2004.11.011
27 https://doi.org/10.1016/j.scitotenv.2012.11.057
28 https://doi.org/10.1016/j.sigpro.2005.02.002
29 https://doi.org/10.1016/j.trac.2007.04.006
30 https://doi.org/10.1016/j.trac.2010.11.018
31 https://doi.org/10.1016/j.trac.2013.04.010
32 https://doi.org/10.1016/s0165-9936(03)01105-1
33 https://doi.org/10.1016/s0731-7085(00)00529-x
34 https://doi.org/10.1021/ac00014a016
35 https://doi.org/10.1021/ac00087a718
36 https://doi.org/10.1021/ac034800e
37 https://doi.org/10.1021/ac3019284
38 https://doi.org/10.1021/ac60214a047
39 https://doi.org/10.1351/pac199870040993
40 schema:datePublished 2014-04
41 schema:datePublishedReg 2014-04-01
42 schema:description This paper presents the development of a capillary electrophoresis method with diode array detector coupled to multivariate curve resolution-alternating least squares (MCR-ALS) to conduct the resolution and quantitation of a mixture of six quinolones in the presence of several unexpected components. Overlapping of time profiles between analytes and water matrix interferences were mathematically solved by data modeling with the well-known MCR-ALS algorithm. With the aim of overcoming the drawback originated by two compounds with similar spectra, a special strategy was implemented to model the complete electropherogram instead of dividing the data in the region as usually performed in previous works. The method was first applied to quantitate analytes in standard mixtures which were randomly prepared in ultrapure water. Then, tap water samples spiked with several interferences were analyzed. Recoveries between 76.7 and 125 % and limits of detection between 5 and 18 μg L(-1) were achieved.
43 schema:genre research_article
44 schema:inLanguage en
45 schema:isAccessibleForFree false
46 schema:isPartOf N361b0541936e4969982b551299f371f4
47 N447492257a3f4eaebae5e9dd6af6680d
48 sg:journal.1357342
49 schema:name Ultrafast quantitation of six quinolones in water samples by second-order capillary electrophoresis data modeling with multivariate curve resolution–alternating least squares
50 schema:pagination 2571-2580
51 schema:productId N0d4279094612400a93e958cbfce35429
52 N1510342f04bd4917a8770b419397a596
53 Nab9cc09b84b642ec85ff81b7f6a98590
54 Nb33f6e30bd8d4d33bc62ace3cc54c06b
55 Nddc397b698754c5b8f70f748c9c05b1c
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027678444
57 https://doi.org/10.1007/s00216-014-7657-3
58 schema:sdDatePublished 2019-04-10T23:17
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher Nc35f1b569b384119835c05dfe011406d
61 schema:url http://link.springer.com/10.1007/s00216-014-7657-3
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N0d4279094612400a93e958cbfce35429 schema:name doi
66 schema:value 10.1007/s00216-014-7657-3
67 rdf:type schema:PropertyValue
68 N1510342f04bd4917a8770b419397a596 schema:name readcube_id
69 schema:value 83daeb094cca87b227591c2209136eec12f01f23d9b42e7d00d5b70f262a5d63
70 rdf:type schema:PropertyValue
71 N361b0541936e4969982b551299f371f4 schema:issueNumber 11
72 rdf:type schema:PublicationIssue
73 N3d2cb90ccfcb4a96833c37d9ed1eab67 rdf:first sg:person.01102743365.13
74 rdf:rest Nf673b33db279462bb1bc3d9aff1d7d47
75 N407da1f2b8cb42988f7972c268fe7af5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Quinolones
77 rdf:type schema:DefinedTerm
78 N44733c32b2c040acb56972a50b984664 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Least-Squares Analysis
80 rdf:type schema:DefinedTerm
81 N447492257a3f4eaebae5e9dd6af6680d schema:volumeNumber 406
82 rdf:type schema:PublicationVolume
83 N7d8346cbbfca41d4926ee259e67e253f rdf:first sg:person.01276403324.55
84 rdf:rest N3d2cb90ccfcb4a96833c37d9ed1eab67
85 N8d87df18edf84c609511a598ccaccd65 rdf:first sg:person.0754117262.29
86 rdf:rest rdf:nil
87 Nab3c11302db34195ae2c1d5adea2c90c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Drinking Water
89 rdf:type schema:DefinedTerm
90 Nab9cc09b84b642ec85ff81b7f6a98590 schema:name dimensions_id
91 schema:value pub.1027678444
92 rdf:type schema:PropertyValue
93 Naf586eee99b64c9cb53a4fd543f68924 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Water Pollutants, Chemical
95 rdf:type schema:DefinedTerm
96 Nb33f6e30bd8d4d33bc62ace3cc54c06b schema:name pubmed_id
97 schema:value 24566760
98 rdf:type schema:PropertyValue
99 Nc35f1b569b384119835c05dfe011406d schema:name Springer Nature - SN SciGraph project
100 rdf:type schema:Organization
101 Ncda7d055dda44dffad849d1360f66544 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Multivariate Analysis
103 rdf:type schema:DefinedTerm
104 Nddc397b698754c5b8f70f748c9c05b1c schema:name nlm_unique_id
105 schema:value 101134327
106 rdf:type schema:PropertyValue
107 Ne2f7888370d24c30a698cbcc70fb95e4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Electrophoresis, Capillary
109 rdf:type schema:DefinedTerm
110 Nf673b33db279462bb1bc3d9aff1d7d47 rdf:first sg:person.01141147051.18
111 rdf:rest N8d87df18edf84c609511a598ccaccd65
112 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
113 schema:name Chemical Sciences
114 rdf:type schema:DefinedTerm
115 anzsrc-for:0301 schema:inDefinedTermSet anzsrc-for:
116 schema:name Analytical Chemistry
117 rdf:type schema:DefinedTerm
118 sg:journal.1357342 schema:issn 1618-2642
119 1618-2650
120 schema:name Analytical and Bioanalytical Chemistry
121 rdf:type schema:Periodical
122 sg:person.01102743365.13 schema:affiliation https://www.grid.ac/institutes/grid.10798.37
123 schema:familyName Vera-Candioti
124 schema:givenName Luciana
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01102743365.13
126 rdf:type schema:Person
127 sg:person.01141147051.18 schema:affiliation https://www.grid.ac/institutes/grid.10798.37
128 schema:familyName Culzoni
129 schema:givenName María J.
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141147051.18
131 rdf:type schema:Person
132 sg:person.01276403324.55 schema:affiliation https://www.grid.ac/institutes/grid.10798.37
133 schema:familyName Alcaráz
134 schema:givenName Mirta R.
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276403324.55
136 rdf:type schema:Person
137 sg:person.0754117262.29 schema:affiliation https://www.grid.ac/institutes/grid.10798.37
138 schema:familyName Goicoechea
139 schema:givenName Héctor C.
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754117262.29
141 rdf:type schema:Person
142 sg:pub.10.1007/s00216-008-2576-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016823775
143 https://doi.org/10.1007/s00216-008-2576-9
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/s00216-010-4071-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030852321
146 https://doi.org/10.1007/s00216-010-4071-3
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1002/elps.200410079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048795208
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1002/elps.200800400 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026714113
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1002/jssc.200301514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008378477
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1002/jssc.200301515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003979119
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1002/jssc.200900753 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039911840
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/0169-7439(95)00047-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1010022624
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/b978-044452701-1.00055-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009325425
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.aca.2008.03.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004906152
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.aca.2009.07.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053200957
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.aca.2012.08.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045192793
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.aca.2012.12.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032488277
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.chemosphere.2012.04.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028051891
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.chroma.2007.11.091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005054072
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.chroma.2011.06.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044414522
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.ecoenv.2004.11.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036354884
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.scitotenv.2012.11.057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023010882
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.sigpro.2005.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004837103
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.trac.2007.04.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048561911
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.trac.2010.11.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038472013
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.trac.2013.04.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029238546
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/s0165-9936(03)01105-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023779108
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/s0731-7085(00)00529-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050104810
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1021/ac00014a016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054966100
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1021/ac00087a718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054971205
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1021/ac034800e schema:sameAs https://app.dimensions.ai/details/publication/pub.1004994259
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1021/ac3019284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055003251
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1021/ac60214a047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055048783
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1351/pac199870040993 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024184707
203 rdf:type schema:CreativeWork
204 https://www.grid.ac/institutes/grid.10798.37 schema:alternateName National University of the Littoral
205 schema:name Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral–CONICET, Ciudad Universitaria, 3000, Santa Fe, Argentina
206 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...