SPE HG-AAS method for the determination of inorganic arsenic in rice—results from method validation studies and a survey on rice ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-09

AUTHORS

Rie R. Rasmussen, Yiting Qian, Jens J. Sloth

ABSTRACT

The present paper describes the development, validation and application of a method for inorganic arsenic (iAs) determination in rice samples. The separation of iAs from organoarsenic compounds was done by off-line solid-phase extraction (SPE) followed by hydride generation atomic absorption spectrometry (HG-AAS) detection. This approach was earlier developed for seafood samples (Rasmussen et al., Anal Bioanal Chem 403:2825-2834, 2012) and has in the present work been tailored for rice products and further optimised for a higher sample throughput and a lower detection limit. Water bath heating (90 °C, 60 min) of samples with dilute HNO3 and H2O2 solubilised and oxidised all iAs to arsenate (As(V)). Loading of buffered sample extracts (pH 6 ± 1) followed by selective elution of arsenate from a strong anion exchange SPE cartridge enabled the selective iAs quantification by HG-AAS, measuring total arsenic (As) in the SPE eluate. The in-house validation gave mean recoveries of 101-106% for spiked rice samples and in two reference samples. The limit of detection was 0.02 mg kg(-1), and repeatability and intra-laboratory reproducibility were less than 6 and 9%, respectively. The SPE HG-AAS method produced similar results compared to parallel high-performance liquid chromatography coupled to inductively coupled plasma mass spectrometry (ICP-MS) analysis. The SPE separation step was tested collaboratively, where the laboratories (N = 10) used either HG-AAS or ICP-MS for iAs determination in a wholemeal rice powder. The trial gave satisfactory results (HorRat value of 1.6) and did not reveal significant difference (t test, p > 0.05) between HG-AAS and ICP-MS quantification. The iAs concentration in 36 rice samples purchased on the Danish retail market varied (0.03-0.60 mg kg(-1)), with the highest concentration found in a red rice sample. More... »

PAGES

7851-7857

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00216-013-6936-8

DOI

http://dx.doi.org/10.1007/s00216-013-6936-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1046495763

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23604416


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0301", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Analytical Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Technical University of Denmark", 
          "id": "https://www.grid.ac/institutes/grid.5170.3", 
          "name": [
            "National Food Institute, Division of Food Chemistry, Technical University of Denmark, M\u00f8rkh\u00f8j Bygade 19, 2860, S\u00f8borg, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rasmussen", 
        "givenName": "Rie R.", 
        "id": "sg:person.01341653565.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341653565.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University of Denmark", 
          "id": "https://www.grid.ac/institutes/grid.5170.3", 
          "name": [
            "National Food Institute, Division of Food Chemistry, Technical University of Denmark, M\u00f8rkh\u00f8j Bygade 19, 2860, S\u00f8borg, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qian", 
        "givenName": "Yiting", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University of Denmark", 
          "id": "https://www.grid.ac/institutes/grid.5170.3", 
          "name": [
            "National Food Institute, Division of Food Chemistry, Technical University of Denmark, M\u00f8rkh\u00f8j Bygade 19, 2860, S\u00f8borg, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sloth", 
        "givenName": "Jens J.", 
        "id": "sg:person.01272076313.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272076313.33"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.2903/j.efsa.2009.1351", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005155653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b816906c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010770086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.trac.2010.11.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023709421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b401321m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026508374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00216-012-6006-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036654793", 
          "https://doi.org/10.1007/s00216-012-6006-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00216-012-6398-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038792216", 
          "https://doi.org/10.1007/s00216-012-6398-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02652030701474219", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041544565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00216-003-1870-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045336645", 
          "https://doi.org/10.1007/s00216-003-1870-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.foodchem.2012.02.113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046530915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b007241i", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048834072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0278-6915(99)00073-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053490226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es0101678", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055493117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es0101678", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055493117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es0502324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055497979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es0502324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055497979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es060222i", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055499089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es060222i", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055499089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es801238p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055515087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es801238p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055515087"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-09", 
    "datePublishedReg": "2013-09-01", 
    "description": "The present paper describes the development, validation and application of a method for inorganic arsenic (iAs) determination in rice samples. The separation of iAs from organoarsenic compounds was done by off-line solid-phase extraction (SPE) followed by hydride generation atomic absorption spectrometry (HG-AAS) detection. This approach was earlier developed for seafood samples (Rasmussen et al., Anal Bioanal Chem 403:2825-2834, 2012) and has in the present work been tailored for rice products and further optimised for a higher sample throughput and a lower detection limit. Water bath heating (90 \u00b0C, 60 min) of samples with dilute HNO3 and H2O2 solubilised and oxidised all iAs to arsenate (As(V)). Loading of buffered sample extracts (pH 6\u2009\u00b1\u20091) followed by selective elution of arsenate from a strong anion exchange SPE cartridge enabled the selective iAs quantification by HG-AAS, measuring total arsenic (As) in the SPE eluate. The in-house validation gave mean recoveries of 101-106% for spiked rice samples and in two reference samples. The limit of detection was 0.02 mg kg(-1), and repeatability and intra-laboratory reproducibility were less than 6 and 9%, respectively. The SPE HG-AAS method produced similar results compared to parallel high-performance liquid chromatography coupled to inductively coupled plasma mass spectrometry (ICP-MS) analysis. The SPE separation step was tested collaboratively, where the laboratories (N\u2009=\u200910) used either HG-AAS or ICP-MS for iAs determination in a wholemeal rice powder. The trial gave satisfactory results (HorRat value of 1.6) and did not reveal significant difference (t test, p\u2009>\u20090.05) between HG-AAS and ICP-MS quantification. The iAs concentration in 36 rice samples purchased on the Danish retail market varied (0.03-0.60 mg kg(-1)), with the highest concentration found in a red rice sample.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00216-013-6936-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3774096", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1357342", 
        "issn": [
          "1618-2642", 
          "1618-2650"
        ], 
        "name": "Analytical and Bioanalytical Chemistry", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "24", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "405"
      }
    ], 
    "name": "SPE HG-AAS method for the determination of inorganic arsenic in rice\u2014results from method validation studies and a survey on rice products", 
    "pagination": "7851-7857", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "dd7ceafcab8c45aafec3edc8d9d92622c84ba35014ef4d237a341d7f549ce263"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23604416"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101134327"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00216-013-6936-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1046495763"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00216-013-6936-8", 
      "https://app.dimensions.ai/details/publication/pub.1046495763"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000515.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00216-013-6936-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00216-013-6936-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00216-013-6936-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00216-013-6936-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00216-013-6936-8'


 

This table displays all metadata directly associated to this object as RDF triples.

132 TRIPLES      21 PREDICATES      44 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00216-013-6936-8 schema:about anzsrc-for:03
2 anzsrc-for:0301
3 schema:author N515998fe4e5d41beb36111d5aa0be9cb
4 schema:citation sg:pub.10.1007/s00216-003-1870-9
5 sg:pub.10.1007/s00216-012-6006-7
6 sg:pub.10.1007/s00216-012-6398-4
7 https://doi.org/10.1016/j.foodchem.2012.02.113
8 https://doi.org/10.1016/j.trac.2010.11.015
9 https://doi.org/10.1016/s0278-6915(99)00073-3
10 https://doi.org/10.1021/es0101678
11 https://doi.org/10.1021/es0502324
12 https://doi.org/10.1021/es060222i
13 https://doi.org/10.1021/es801238p
14 https://doi.org/10.1039/b007241i
15 https://doi.org/10.1039/b401321m
16 https://doi.org/10.1039/b816906c
17 https://doi.org/10.1080/02652030701474219
18 https://doi.org/10.2903/j.efsa.2009.1351
19 schema:datePublished 2013-09
20 schema:datePublishedReg 2013-09-01
21 schema:description The present paper describes the development, validation and application of a method for inorganic arsenic (iAs) determination in rice samples. The separation of iAs from organoarsenic compounds was done by off-line solid-phase extraction (SPE) followed by hydride generation atomic absorption spectrometry (HG-AAS) detection. This approach was earlier developed for seafood samples (Rasmussen et al., Anal Bioanal Chem 403:2825-2834, 2012) and has in the present work been tailored for rice products and further optimised for a higher sample throughput and a lower detection limit. Water bath heating (90 °C, 60 min) of samples with dilute HNO3 and H2O2 solubilised and oxidised all iAs to arsenate (As(V)). Loading of buffered sample extracts (pH 6 ± 1) followed by selective elution of arsenate from a strong anion exchange SPE cartridge enabled the selective iAs quantification by HG-AAS, measuring total arsenic (As) in the SPE eluate. The in-house validation gave mean recoveries of 101-106% for spiked rice samples and in two reference samples. The limit of detection was 0.02 mg kg(-1), and repeatability and intra-laboratory reproducibility were less than 6 and 9%, respectively. The SPE HG-AAS method produced similar results compared to parallel high-performance liquid chromatography coupled to inductively coupled plasma mass spectrometry (ICP-MS) analysis. The SPE separation step was tested collaboratively, where the laboratories (N = 10) used either HG-AAS or ICP-MS for iAs determination in a wholemeal rice powder. The trial gave satisfactory results (HorRat value of 1.6) and did not reveal significant difference (t test, p > 0.05) between HG-AAS and ICP-MS quantification. The iAs concentration in 36 rice samples purchased on the Danish retail market varied (0.03-0.60 mg kg(-1)), with the highest concentration found in a red rice sample.
22 schema:genre research_article
23 schema:inLanguage en
24 schema:isAccessibleForFree true
25 schema:isPartOf N28fae35990fe45beb55a683179c46935
26 Na4b85cf5e5fc41bd90177b9df942a732
27 sg:journal.1357342
28 schema:name SPE HG-AAS method for the determination of inorganic arsenic in rice—results from method validation studies and a survey on rice products
29 schema:pagination 7851-7857
30 schema:productId N09805f624d964be997eac3f308dc1371
31 N1c0a5d81010f4ea6b330bb5df3dd227c
32 N3add63d9790e42d59fea7e98ce7f8e04
33 Na693ae669b474282be8d4063c7fddd9d
34 Nfadbfc4042b34e9b85f846fbcbefbbbc
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046495763
36 https://doi.org/10.1007/s00216-013-6936-8
37 schema:sdDatePublished 2019-04-10T21:38
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher N99ec4080bbe64500a65d646183559c4d
40 schema:url http://link.springer.com/10.1007%2Fs00216-013-6936-8
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N09805f624d964be997eac3f308dc1371 schema:name readcube_id
45 schema:value dd7ceafcab8c45aafec3edc8d9d92622c84ba35014ef4d237a341d7f549ce263
46 rdf:type schema:PropertyValue
47 N1c0a5d81010f4ea6b330bb5df3dd227c schema:name dimensions_id
48 schema:value pub.1046495763
49 rdf:type schema:PropertyValue
50 N28fae35990fe45beb55a683179c46935 schema:volumeNumber 405
51 rdf:type schema:PublicationVolume
52 N3add63d9790e42d59fea7e98ce7f8e04 schema:name pubmed_id
53 schema:value 23604416
54 rdf:type schema:PropertyValue
55 N515998fe4e5d41beb36111d5aa0be9cb rdf:first sg:person.01341653565.96
56 rdf:rest Nbcbbff952f0f4b278146d6be9c4d9cef
57 N99ec4080bbe64500a65d646183559c4d schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 N9b78eb34fc824b708993808b486f5b6d rdf:first sg:person.01272076313.33
60 rdf:rest rdf:nil
61 N9d8d68c15e81408c965119b414a40274 schema:affiliation https://www.grid.ac/institutes/grid.5170.3
62 schema:familyName Qian
63 schema:givenName Yiting
64 rdf:type schema:Person
65 Na4b85cf5e5fc41bd90177b9df942a732 schema:issueNumber 24
66 rdf:type schema:PublicationIssue
67 Na693ae669b474282be8d4063c7fddd9d schema:name nlm_unique_id
68 schema:value 101134327
69 rdf:type schema:PropertyValue
70 Nbcbbff952f0f4b278146d6be9c4d9cef rdf:first N9d8d68c15e81408c965119b414a40274
71 rdf:rest N9b78eb34fc824b708993808b486f5b6d
72 Nfadbfc4042b34e9b85f846fbcbefbbbc schema:name doi
73 schema:value 10.1007/s00216-013-6936-8
74 rdf:type schema:PropertyValue
75 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
76 schema:name Chemical Sciences
77 rdf:type schema:DefinedTerm
78 anzsrc-for:0301 schema:inDefinedTermSet anzsrc-for:
79 schema:name Analytical Chemistry
80 rdf:type schema:DefinedTerm
81 sg:grant.3774096 http://pending.schema.org/fundedItem sg:pub.10.1007/s00216-013-6936-8
82 rdf:type schema:MonetaryGrant
83 sg:journal.1357342 schema:issn 1618-2642
84 1618-2650
85 schema:name Analytical and Bioanalytical Chemistry
86 rdf:type schema:Periodical
87 sg:person.01272076313.33 schema:affiliation https://www.grid.ac/institutes/grid.5170.3
88 schema:familyName Sloth
89 schema:givenName Jens J.
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272076313.33
91 rdf:type schema:Person
92 sg:person.01341653565.96 schema:affiliation https://www.grid.ac/institutes/grid.5170.3
93 schema:familyName Rasmussen
94 schema:givenName Rie R.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341653565.96
96 rdf:type schema:Person
97 sg:pub.10.1007/s00216-003-1870-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045336645
98 https://doi.org/10.1007/s00216-003-1870-9
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/s00216-012-6006-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036654793
101 https://doi.org/10.1007/s00216-012-6006-7
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/s00216-012-6398-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038792216
104 https://doi.org/10.1007/s00216-012-6398-4
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/j.foodchem.2012.02.113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046530915
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/j.trac.2010.11.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023709421
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/s0278-6915(99)00073-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053490226
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1021/es0101678 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055493117
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1021/es0502324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055497979
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1021/es060222i schema:sameAs https://app.dimensions.ai/details/publication/pub.1055499089
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1021/es801238p schema:sameAs https://app.dimensions.ai/details/publication/pub.1055515087
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1039/b007241i schema:sameAs https://app.dimensions.ai/details/publication/pub.1048834072
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1039/b401321m schema:sameAs https://app.dimensions.ai/details/publication/pub.1026508374
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1039/b816906c schema:sameAs https://app.dimensions.ai/details/publication/pub.1010770086
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1080/02652030701474219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041544565
127 rdf:type schema:CreativeWork
128 https://doi.org/10.2903/j.efsa.2009.1351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005155653
129 rdf:type schema:CreativeWork
130 https://www.grid.ac/institutes/grid.5170.3 schema:alternateName Technical University of Denmark
131 schema:name National Food Institute, Division of Food Chemistry, Technical University of Denmark, Mørkhøj Bygade 19, 2860, Søborg, Denmark
132 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...