Current trends and challenges in sample preparation for global metabolomics using liquid chromatography–mass spectrometry View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-05-12

AUTHORS

Dajana Vuckovic

ABSTRACT

The choice of sample-preparation method is extremely important in metabolomic studies because it affects both the observed metabolite content and biological interpretation of the data. An ideal sample-preparation method for global metabolomics should (i) be as non-selective as possible to ensure adequate depth of metabolite coverage; (ii) be simple and fast to prevent metabolite loss and/or degradation during the preparation procedure and enable high-throughput; (iii) be reproducible; and (iv) incorporate a metabolism-quenching step to represent true metabolome composition at the time of sampling. Despite its importance, sample preparation is often an overlooked aspect of metabolomics, so the focus of this review is to explore the role, challenges, and trends in sample preparation specifically within the context of global metabolomics by liquid chromatography–mass spectrometry (LC–MS). This review will cover the most common methods including solvent precipitation and extraction, solid-phase extraction and ultrafiltration, and discuss how to improve analytical quality and metabolite coverage in metabolomic studies of biofluids, tissues, and mammalian cells. Recent developments in this field will also be critically examined, including in vivo methods, turbulent-flow chromatography, and dried blood spot sampling. More... »

PAGES

1523-1548

References to SciGraph publications

  • 2011-03-05. Standard operating procedures for pre-analytical handling of blood and urine for metabolomic studies and biobanks in JOURNAL OF BIOMOLECULAR NMR
  • 2009-11-04. Development and validation of a UPLC/MS method for a nutritional metabolomic study of human plasma in METABOLOMICS
  • 2010-05-06. Global metabolic profiling procedures for urine using UPLC–MS in NATURE PROTOCOLS
  • 2011-06-30. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry in NATURE PROTOCOLS
  • 2008-11-27. Tissue-targeted metabonomics: biological considerations and application to doxorubicin-induced hepatic oxidative stress in METABOLOMICS
  • 2011-06-05. The biological interpretation of metabolomic data can be misled by the extraction method used in METABOLOMICS
  • 2009-03-11. From differentiating metabolites to biomarkers in ANALYTICAL AND BIOANALYTICAL CHEMISTRY
  • 2005-07-01. Summary recommendations for standardization and reporting of metabolic analyses in NATURE BIOTECHNOLOGY
  • 2010-11-16. Quantitative metabolomics based on gas chromatography mass spectrometry: status and perspectives in METABOLOMICS
  • 2008-11-08. A direct cell quenching method for cell-culture based metabolomics in METABOLOMICS
  • 2011-06-02. In vivo solid-phase microextraction for monitoring intravenous concentrations of drugs and metabolites in NATURE PROTOCOLS
  • 2011-08-18. The metabolome of human placental tissue: investigation of first trimester tissue and changes related to preeclampsia in late pregnancy in METABOLOMICS
  • 2009-02-01. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression in NATURE
  • 2010-11-11. Preanalytical standardization of amino acid and acylcarnitine metabolite profiling in human blood using tandem mass spectrometry in METABOLOMICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00216-012-6039-y

    DOI

    http://dx.doi.org/10.1007/s00216-012-6039-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1014173940

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/22576654


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0301", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Analytical Chemistry", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Body Fluids", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chromatography, Liquid", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mass Spectrometry", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Metabolomics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Solid Phase Extraction", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street Room 940, M5S 3E1, Toronto, Canada", 
              "id": "http://www.grid.ac/institutes/grid.17063.33", 
              "name": [
                "Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street Room 940, M5S 3E1, Toronto, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vuckovic", 
            "givenName": "Dajana", 
            "id": "sg:person.0775211471.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775211471.27"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s10858-011-9489-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017612656", 
              "https://doi.org/10.1007/s10858-011-9489-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11306-011-0324-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005885857", 
              "https://doi.org/10.1007/s11306-011-0324-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11306-010-0256-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017035716", 
              "https://doi.org/10.1007/s11306-010-0256-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00216-009-2690-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015338024", 
              "https://doi.org/10.1007/s00216-009-2690-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nprot.2011.329", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004853301", 
              "https://doi.org/10.1038/nprot.2011.329"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11306-008-0137-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029836615", 
              "https://doi.org/10.1007/s11306-008-0137-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nprot.2010.50", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036792816", 
              "https://doi.org/10.1038/nprot.2010.50"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11306-008-0141-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031450322", 
              "https://doi.org/10.1007/s11306-008-0141-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nprot.2011.335", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015396743", 
              "https://doi.org/10.1038/nprot.2011.335"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt0705-833", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039648218", 
              "https://doi.org/10.1038/nbt0705-833"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11306-009-0188-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028680294", 
              "https://doi.org/10.1007/s11306-009-0188-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11306-010-0254-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025054117", 
              "https://doi.org/10.1007/s11306-010-0254-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07762", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010801810", 
              "https://doi.org/10.1038/nature07762"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11306-011-0348-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032498758", 
              "https://doi.org/10.1007/s11306-011-0348-6"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2012-05-12", 
        "datePublishedReg": "2012-05-12", 
        "description": "The choice of sample-preparation method is extremely important in metabolomic studies because it affects both the observed metabolite content and biological interpretation of the data. An ideal sample-preparation method for global metabolomics should (i) be as non-selective as possible to ensure adequate depth of metabolite coverage; (ii) be simple and fast to prevent metabolite loss and/or degradation during the preparation procedure and enable high-throughput; (iii) be reproducible; and (iv) incorporate a metabolism-quenching step to represent true metabolome composition at the time of sampling. Despite its importance, sample preparation is often an overlooked aspect of metabolomics, so the focus of this review is to explore the role, challenges, and trends in sample preparation specifically within the context of global metabolomics by liquid chromatography\u2013mass spectrometry (LC\u2013MS). This review will cover the most common methods including solvent precipitation and extraction, solid-phase extraction and ultrafiltration, and discuss how to improve analytical quality and metabolite coverage in metabolomic studies of biofluids, tissues, and mammalian cells. Recent developments in this field will also be critically examined, including in vivo methods, turbulent-flow chromatography, and dried blood spot sampling.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00216-012-6039-y", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1358693", 
            "issn": [
              "1618-2642", 
              "1618-2650"
            ], 
            "name": "Analytical and Bioanalytical Chemistry", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "403"
          }
        ], 
        "keywords": [
          "liquid chromatography-mass spectrometry", 
          "chromatography-mass spectrometry", 
          "sample preparation method", 
          "sample preparation", 
          "metabolite coverage", 
          "turbulent flow chromatography", 
          "solid-phase extraction", 
          "solvent precipitation", 
          "preparation procedure", 
          "metabolomics studies", 
          "spectrometry", 
          "global metabolomics", 
          "preparation", 
          "metabolite loss", 
          "analytical quality", 
          "metabolome composition", 
          "metabolomics", 
          "recent developments", 
          "chromatography", 
          "biofluids", 
          "extraction", 
          "ultrafiltration", 
          "degradation", 
          "composition", 
          "method", 
          "metabolite content", 
          "mammalian cells", 
          "vivo methods", 
          "precipitation", 
          "common method", 
          "step", 
          "coverage", 
          "content", 
          "current trends", 
          "blood spots", 
          "review", 
          "study", 
          "challenges", 
          "time of sampling", 
          "field", 
          "procedure", 
          "cells", 
          "time", 
          "trends", 
          "spots", 
          "development", 
          "importance", 
          "role", 
          "sampling", 
          "loss", 
          "interpretation", 
          "biological interpretation", 
          "aspects", 
          "data", 
          "choice", 
          "overlooked aspect", 
          "focus", 
          "depth", 
          "adequate depth", 
          "quality", 
          "tissue", 
          "context"
        ], 
        "name": "Current trends and challenges in sample preparation for global metabolomics using liquid chromatography\u2013mass spectrometry", 
        "pagination": "1523-1548", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1014173940"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00216-012-6039-y"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "22576654"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00216-012-6039-y", 
          "https://app.dimensions.ai/details/publication/pub.1014173940"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T15:56", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_566.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00216-012-6039-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00216-012-6039-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00216-012-6039-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00216-012-6039-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00216-012-6039-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    207 TRIPLES      21 PREDICATES      108 URIs      86 LITERALS      14 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00216-012-6039-y schema:about N19e972f7395f4e4ca04172701901487d
    2 N379164c47c50485e8b6cfee636e3d6c8
    3 N380509f546ab4c4fb729d1bcba389630
    4 N4a0fec31f7844ea6b700c95c328874b1
    5 N4b00e1e3c4e645318d66648865f71a88
    6 N63d6338640d64c74ade91b212d637968
    7 N680a90887b3b4ab28ef03dd435d35cdb
    8 anzsrc-for:03
    9 anzsrc-for:0301
    10 schema:author N934dd5f8cb724892ab5b3278cda738ed
    11 schema:citation sg:pub.10.1007/s00216-009-2690-3
    12 sg:pub.10.1007/s10858-011-9489-1
    13 sg:pub.10.1007/s11306-008-0137-z
    14 sg:pub.10.1007/s11306-008-0141-3
    15 sg:pub.10.1007/s11306-009-0188-9
    16 sg:pub.10.1007/s11306-010-0254-3
    17 sg:pub.10.1007/s11306-010-0256-1
    18 sg:pub.10.1007/s11306-011-0324-1
    19 sg:pub.10.1007/s11306-011-0348-6
    20 sg:pub.10.1038/nature07762
    21 sg:pub.10.1038/nbt0705-833
    22 sg:pub.10.1038/nprot.2010.50
    23 sg:pub.10.1038/nprot.2011.329
    24 sg:pub.10.1038/nprot.2011.335
    25 schema:datePublished 2012-05-12
    26 schema:datePublishedReg 2012-05-12
    27 schema:description The choice of sample-preparation method is extremely important in metabolomic studies because it affects both the observed metabolite content and biological interpretation of the data. An ideal sample-preparation method for global metabolomics should (i) be as non-selective as possible to ensure adequate depth of metabolite coverage; (ii) be simple and fast to prevent metabolite loss and/or degradation during the preparation procedure and enable high-throughput; (iii) be reproducible; and (iv) incorporate a metabolism-quenching step to represent true metabolome composition at the time of sampling. Despite its importance, sample preparation is often an overlooked aspect of metabolomics, so the focus of this review is to explore the role, challenges, and trends in sample preparation specifically within the context of global metabolomics by liquid chromatography–mass spectrometry (LC–MS). This review will cover the most common methods including solvent precipitation and extraction, solid-phase extraction and ultrafiltration, and discuss how to improve analytical quality and metabolite coverage in metabolomic studies of biofluids, tissues, and mammalian cells. Recent developments in this field will also be critically examined, including in vivo methods, turbulent-flow chromatography, and dried blood spot sampling.
    28 schema:genre article
    29 schema:isAccessibleForFree false
    30 schema:isPartOf Nd0f6f6cc523242e2953a399e7f052858
    31 Nfaf0bab3a23c44cf93f14d3b541e2211
    32 sg:journal.1358693
    33 schema:keywords adequate depth
    34 analytical quality
    35 aspects
    36 biofluids
    37 biological interpretation
    38 blood spots
    39 cells
    40 challenges
    41 choice
    42 chromatography
    43 chromatography-mass spectrometry
    44 common method
    45 composition
    46 content
    47 context
    48 coverage
    49 current trends
    50 data
    51 degradation
    52 depth
    53 development
    54 extraction
    55 field
    56 focus
    57 global metabolomics
    58 importance
    59 interpretation
    60 liquid chromatography-mass spectrometry
    61 loss
    62 mammalian cells
    63 metabolite content
    64 metabolite coverage
    65 metabolite loss
    66 metabolome composition
    67 metabolomics
    68 metabolomics studies
    69 method
    70 overlooked aspect
    71 precipitation
    72 preparation
    73 preparation procedure
    74 procedure
    75 quality
    76 recent developments
    77 review
    78 role
    79 sample preparation
    80 sample preparation method
    81 sampling
    82 solid-phase extraction
    83 solvent precipitation
    84 spectrometry
    85 spots
    86 step
    87 study
    88 time
    89 time of sampling
    90 tissue
    91 trends
    92 turbulent flow chromatography
    93 ultrafiltration
    94 vivo methods
    95 schema:name Current trends and challenges in sample preparation for global metabolomics using liquid chromatography–mass spectrometry
    96 schema:pagination 1523-1548
    97 schema:productId N2680ed32a5a041a284b40837be6d0d28
    98 N8eb66bbcced94d4a90d5313e004497a9
    99 Nd7a4bd89ca6e4012abd4215385cd5b79
    100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014173940
    101 https://doi.org/10.1007/s00216-012-6039-y
    102 schema:sdDatePublished 2022-09-02T15:56
    103 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    104 schema:sdPublisher N1f47247eafcb41e28af5145049e9d250
    105 schema:url https://doi.org/10.1007/s00216-012-6039-y
    106 sgo:license sg:explorer/license/
    107 sgo:sdDataset articles
    108 rdf:type schema:ScholarlyArticle
    109 N19e972f7395f4e4ca04172701901487d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    110 schema:name Animals
    111 rdf:type schema:DefinedTerm
    112 N1f47247eafcb41e28af5145049e9d250 schema:name Springer Nature - SN SciGraph project
    113 rdf:type schema:Organization
    114 N2680ed32a5a041a284b40837be6d0d28 schema:name pubmed_id
    115 schema:value 22576654
    116 rdf:type schema:PropertyValue
    117 N379164c47c50485e8b6cfee636e3d6c8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    118 schema:name Metabolomics
    119 rdf:type schema:DefinedTerm
    120 N380509f546ab4c4fb729d1bcba389630 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    121 schema:name Humans
    122 rdf:type schema:DefinedTerm
    123 N4a0fec31f7844ea6b700c95c328874b1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    124 schema:name Chromatography, Liquid
    125 rdf:type schema:DefinedTerm
    126 N4b00e1e3c4e645318d66648865f71a88 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    127 schema:name Solid Phase Extraction
    128 rdf:type schema:DefinedTerm
    129 N63d6338640d64c74ade91b212d637968 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    130 schema:name Mass Spectrometry
    131 rdf:type schema:DefinedTerm
    132 N680a90887b3b4ab28ef03dd435d35cdb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    133 schema:name Body Fluids
    134 rdf:type schema:DefinedTerm
    135 N8eb66bbcced94d4a90d5313e004497a9 schema:name dimensions_id
    136 schema:value pub.1014173940
    137 rdf:type schema:PropertyValue
    138 N934dd5f8cb724892ab5b3278cda738ed rdf:first sg:person.0775211471.27
    139 rdf:rest rdf:nil
    140 Nd0f6f6cc523242e2953a399e7f052858 schema:volumeNumber 403
    141 rdf:type schema:PublicationVolume
    142 Nd7a4bd89ca6e4012abd4215385cd5b79 schema:name doi
    143 schema:value 10.1007/s00216-012-6039-y
    144 rdf:type schema:PropertyValue
    145 Nfaf0bab3a23c44cf93f14d3b541e2211 schema:issueNumber 6
    146 rdf:type schema:PublicationIssue
    147 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    148 schema:name Chemical Sciences
    149 rdf:type schema:DefinedTerm
    150 anzsrc-for:0301 schema:inDefinedTermSet anzsrc-for:
    151 schema:name Analytical Chemistry
    152 rdf:type schema:DefinedTerm
    153 sg:journal.1358693 schema:issn 1618-2642
    154 1618-2650
    155 schema:name Analytical and Bioanalytical Chemistry
    156 schema:publisher Springer Nature
    157 rdf:type schema:Periodical
    158 sg:person.0775211471.27 schema:affiliation grid-institutes:grid.17063.33
    159 schema:familyName Vuckovic
    160 schema:givenName Dajana
    161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775211471.27
    162 rdf:type schema:Person
    163 sg:pub.10.1007/s00216-009-2690-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015338024
    164 https://doi.org/10.1007/s00216-009-2690-3
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1007/s10858-011-9489-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017612656
    167 https://doi.org/10.1007/s10858-011-9489-1
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1007/s11306-008-0137-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1029836615
    170 https://doi.org/10.1007/s11306-008-0137-z
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1007/s11306-008-0141-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031450322
    173 https://doi.org/10.1007/s11306-008-0141-3
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1007/s11306-009-0188-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028680294
    176 https://doi.org/10.1007/s11306-009-0188-9
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1007/s11306-010-0254-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025054117
    179 https://doi.org/10.1007/s11306-010-0254-3
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1007/s11306-010-0256-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017035716
    182 https://doi.org/10.1007/s11306-010-0256-1
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1007/s11306-011-0324-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005885857
    185 https://doi.org/10.1007/s11306-011-0324-1
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1007/s11306-011-0348-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032498758
    188 https://doi.org/10.1007/s11306-011-0348-6
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1038/nature07762 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010801810
    191 https://doi.org/10.1038/nature07762
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1038/nbt0705-833 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039648218
    194 https://doi.org/10.1038/nbt0705-833
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1038/nprot.2010.50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036792816
    197 https://doi.org/10.1038/nprot.2010.50
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1038/nprot.2011.329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004853301
    200 https://doi.org/10.1038/nprot.2011.329
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1038/nprot.2011.335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015396743
    203 https://doi.org/10.1038/nprot.2011.335
    204 rdf:type schema:CreativeWork
    205 grid-institutes:grid.17063.33 schema:alternateName Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street Room 940, M5S 3E1, Toronto, Canada
    206 schema:name Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street Room 940, M5S 3E1, Toronto, Canada
    207 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...