Retention modelling of polychlorinated biphenyls in comprehensive two-dimensional gas chromatography View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-01

AUTHORS

Angelo Antonio D’Archivio, Angela Incani, Fabrizio Ruggieri

ABSTRACT

In this paper, we use a quantitative structure-retention relationship (QSRR) method to predict the retention times of polychlorinated biphenyls (PCBs) in comprehensive two-dimensional gas chromatography (GC×GC). We analyse the GC×GC retention data taken from the literature by comparing predictive capability of different regression methods. The various models are generated using 70 out of 209 PCB congeners in the calibration stage, while their predictive performance is evaluated on the remaining 139 compounds. The two-dimensional chromatogram is initially estimated by separately modelling retention times of PCBs in the first and in the second column ((1) t (R) and (2) t (R), respectively). In particular, multilinear regression (MLR) combined with genetic algorithm (GA) variable selection is performed to extract two small subsets of predictors for (1) t (R) and (2) t (R) from a large set of theoretical molecular descriptors provided by the popular software Dragon, which after removal of highly correlated or almost constant variables consists of 237 structure-related quantities. Based on GA-MLR analysis, a four-dimensional and a five-dimensional relationship modelling (1) t (R) and (2) t (R), respectively, are identified. Single-response partial least square (PLS-1) regression is alternatively applied to independently model (1) t (R) and (2) t (R) without the need for preliminary GA variable selection. Further, we explore the possibility of predicting the two-dimensional chromatogram of PCBs in a single calibration procedure by using a two-response PLS (PLS-2) model or a feed-forward artificial neural network (ANN) with two output neurons. In the first case, regression is carried out on the full set of 237 descriptors, while the variables previously selected by GA-MLR are initially considered as ANN inputs and subjected to a sensitivity analysis to remove the redundant ones. Results show PLS-1 regression exhibits a noticeably better descriptive and predictive performance than the other investigated approaches. The observed values of determination coefficients for (1) t (R) and (2) t (R) in calibration (0.9999 and 0.9993, respectively) and prediction (0.9987 and 0.9793, respectively) provided by PLS-1 demonstrate that GC×GC behaviour of PCBs is properly modelled. In particular, the predicted two-dimensional GC×GC chromatogram of 139 PCBs not involved in the calibration stage closely resembles the experimental one. Based on the above lines of evidence, the proposed approach ensures accurate simulation of the whole GC×GC chromatogram of PCBs using experimental determination of only 1/3 retention data of representative congeners. More... »

PAGES

903-913

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00216-010-4326-z

DOI

http://dx.doi.org/10.1007/s00216-010-4326-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016702940

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20972553


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chromatography, Gas", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Least-Squares Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Chemical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neural Networks (Computer)", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polychlorinated Biphenyls", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Regression Analysis", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of L'Aquila", 
          "id": "https://www.grid.ac/institutes/grid.158820.6", 
          "name": [
            "Dipartimento di Chimica, Ingegneria Chimica e Materiali, Universit\u00e0 degli Studi dell\u2019Aquila, Via Vetoio, 67010, Coppito, L\u2019Aquila, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "D\u2019Archivio", 
        "givenName": "Angelo Antonio", 
        "id": "sg:person.01206413466.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206413466.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of L'Aquila", 
          "id": "https://www.grid.ac/institutes/grid.158820.6", 
          "name": [
            "Dipartimento di Chimica, Ingegneria Chimica e Materiali, Universit\u00e0 degli Studi dell\u2019Aquila, Via Vetoio, 67010, Coppito, L\u2019Aquila, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Incani", 
        "givenName": "Angela", 
        "id": "sg:person.0771416460.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771416460.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of L'Aquila", 
          "id": "https://www.grid.ac/institutes/grid.158820.6", 
          "name": [
            "Dipartimento di Chimica, Ingegneria Chimica e Materiali, Universit\u00e0 degli Studi dell\u2019Aquila, Via Vetoio, 67010, Coppito, L\u2019Aquila, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ruggieri", 
        "givenName": "Fabrizio", 
        "id": "sg:person.01334361140.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334361140.99"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.chroma.2007.03.108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000596248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0021-9673(02)00327-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001770100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1365/s10337-009-1233-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003860324", 
          "https://doi.org/10.1365/s10337-009-1233-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1365/s10337-009-1233-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003860324", 
          "https://doi.org/10.1365/s10337-009-1233-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chroma.2003.08.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004719681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chroma.2003.08.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004719681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemosphere.2005.11.057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005219203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jssc.200700546", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005412797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10947-006-0036-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005948042", 
          "https://doi.org/10.1007/s10947-006-0036-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chroma.2007.09.058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006608596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0165-9936(98)00011-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008249722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jssc.200401933", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008439111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jssc.200401933", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008439111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jssc.200301592", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009073013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jssc.200301592", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009073013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envpol.2005.08.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011103476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envpol.2005.08.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011103476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0021-9673(98)00649-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011559821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00216-007-1188-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015670912", 
          "https://doi.org/10.1007/s00216-007-1188-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00216-007-1188-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015670912", 
          "https://doi.org/10.1007/s00216-007-1188-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-7439(98)00053-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017468504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0021-9673(03)00242-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018882108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0021-9673(03)00242-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018882108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-7439(98)00118-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022152160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac051051n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023808116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac051051n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023808116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0021-9673(99)00063-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030521524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/i8111125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031740767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chroma.2009.06.049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032366011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chroma.2003.08.100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032659948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chroma.2003.08.100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032659948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-7439(97)00079-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034095402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chroma.2004.04.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039466067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chroma.2006.06.074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040203625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-7439(01)00155-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041387192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.trac.2007.08.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042268630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chroma.2008.07.060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043844106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scitotenv.2004.03.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046749483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chroma.2005.05.105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052986304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cr068412z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053890723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cr068412z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053890723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac00161a007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054977022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac00161a008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054977023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es051725b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055498579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es051725b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055498579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109505823", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9783527613106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109505823"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-01", 
    "datePublishedReg": "2011-01-01", 
    "description": "In this paper, we use a quantitative structure-retention relationship (QSRR) method to predict the retention times of polychlorinated biphenyls (PCBs) in comprehensive two-dimensional gas chromatography (GC\u00d7GC). We analyse the GC\u00d7GC retention data taken from the literature by comparing predictive capability of different regression methods. The various models are generated using 70 out of 209\u00a0PCB congeners in the calibration stage, while their predictive performance is evaluated on the remaining 139 compounds. The two-dimensional chromatogram is initially estimated by separately modelling retention times of PCBs in the first and in the second column ((1) t (R) and (2) t (R), respectively). In particular, multilinear regression (MLR) combined with genetic algorithm (GA) variable selection is performed to extract two small subsets of predictors for (1) t (R) and (2) t (R) from a large set of theoretical molecular descriptors provided by the popular software Dragon, which after removal of highly correlated or almost constant variables consists of 237 structure-related quantities. Based on GA-MLR analysis, a four-dimensional and a five-dimensional relationship modelling (1) t (R) and (2) t (R), respectively, are identified. Single-response partial least square (PLS-1) regression is alternatively applied to independently model (1) t (R) and (2) t (R) without the need for preliminary GA variable selection. Further, we explore the possibility of predicting the two-dimensional chromatogram of PCBs in a single calibration procedure by using a two-response PLS (PLS-2) model or a feed-forward artificial neural network (ANN) with two output neurons. In the first case, regression is carried out on the full set of 237 descriptors, while the variables previously selected by GA-MLR are initially considered as ANN inputs and subjected to a sensitivity analysis to remove the redundant ones. Results show PLS-1 regression exhibits a noticeably better descriptive and predictive performance than the other investigated approaches. The observed values of determination coefficients for (1) t (R) and (2) t (R) in calibration (0.9999 and 0.9993, respectively) and prediction (0.9987 and 0.9793, respectively) provided by PLS-1 demonstrate that GC\u00d7GC behaviour of PCBs is properly modelled. In particular, the predicted two-dimensional GC\u00d7GC chromatogram of 139\u00a0PCBs not involved in the calibration stage closely resembles the experimental one. Based on the above lines of evidence, the proposed approach ensures accurate simulation of the whole GC\u00d7GC chromatogram of PCBs using experimental determination of only 1/3 retention data of representative congeners.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00216-010-4326-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1357342", 
        "issn": [
          "1618-2642", 
          "1618-2650"
        ], 
        "name": "Analytical and Bioanalytical Chemistry", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "399"
      }
    ], 
    "name": "Retention modelling of polychlorinated biphenyls in comprehensive two-dimensional gas chromatography", 
    "pagination": "903-913", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4f9531b89450997593014ef9bcb698d7a7b82d6159047e0854d80bbadaf56987"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20972553"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101134327"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00216-010-4326-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016702940"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00216-010-4326-z", 
      "https://app.dimensions.ai/details/publication/pub.1016702940"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000584.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00216-010-4326-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00216-010-4326-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00216-010-4326-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00216-010-4326-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00216-010-4326-z'


 

This table displays all metadata directly associated to this object as RDF triples.

225 TRIPLES      21 PREDICATES      73 URIs      29 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00216-010-4326-z schema:about N0bc0710b724a4cb2a47838503a7ea3bc
2 N1d60258e8ae44ea9b30c711148900da8
3 N2552d312f4ea41aaa710e88595ec89fb
4 N7b70fc74ad11409a89e4e8fda1dce579
5 N7ea7e7dce4b4469986087e60689fb6d3
6 N9648b142a28d4799a987e8c437b14d8b
7 Ne72f2c03154b414ba470a57f53db3457
8 Nfd3ba68ebf0f415596163038e68d7005
9 anzsrc-for:08
10 anzsrc-for:0801
11 schema:author N072434aec3f74b06b911c45ab2d65952
12 schema:citation sg:pub.10.1007/s00216-007-1188-0
13 sg:pub.10.1007/s10947-006-0036-y
14 sg:pub.10.1365/s10337-009-1233-6
15 https://app.dimensions.ai/details/publication/pub.1109505823
16 https://doi.org/10.1002/9783527613106
17 https://doi.org/10.1002/jssc.200301592
18 https://doi.org/10.1002/jssc.200401933
19 https://doi.org/10.1002/jssc.200700546
20 https://doi.org/10.1016/j.chemosphere.2005.11.057
21 https://doi.org/10.1016/j.chroma.2003.08.037
22 https://doi.org/10.1016/j.chroma.2003.08.100
23 https://doi.org/10.1016/j.chroma.2004.04.003
24 https://doi.org/10.1016/j.chroma.2005.05.105
25 https://doi.org/10.1016/j.chroma.2006.06.074
26 https://doi.org/10.1016/j.chroma.2007.03.108
27 https://doi.org/10.1016/j.chroma.2007.09.058
28 https://doi.org/10.1016/j.chroma.2008.07.060
29 https://doi.org/10.1016/j.chroma.2009.06.049
30 https://doi.org/10.1016/j.envpol.2005.08.027
31 https://doi.org/10.1016/j.scitotenv.2004.03.022
32 https://doi.org/10.1016/j.trac.2007.08.006
33 https://doi.org/10.1016/s0021-9673(02)00327-8
34 https://doi.org/10.1016/s0021-9673(03)00242-5
35 https://doi.org/10.1016/s0021-9673(98)00649-9
36 https://doi.org/10.1016/s0021-9673(99)00063-1
37 https://doi.org/10.1016/s0165-9936(98)00011-9
38 https://doi.org/10.1016/s0169-7439(01)00155-1
39 https://doi.org/10.1016/s0169-7439(97)00079-8
40 https://doi.org/10.1016/s0169-7439(98)00053-7
41 https://doi.org/10.1016/s0169-7439(98)00118-x
42 https://doi.org/10.1021/ac00161a007
43 https://doi.org/10.1021/ac00161a008
44 https://doi.org/10.1021/ac051051n
45 https://doi.org/10.1021/cr068412z
46 https://doi.org/10.1021/es051725b
47 https://doi.org/10.3390/i8111125
48 schema:datePublished 2011-01
49 schema:datePublishedReg 2011-01-01
50 schema:description In this paper, we use a quantitative structure-retention relationship (QSRR) method to predict the retention times of polychlorinated biphenyls (PCBs) in comprehensive two-dimensional gas chromatography (GC×GC). We analyse the GC×GC retention data taken from the literature by comparing predictive capability of different regression methods. The various models are generated using 70 out of 209 PCB congeners in the calibration stage, while their predictive performance is evaluated on the remaining 139 compounds. The two-dimensional chromatogram is initially estimated by separately modelling retention times of PCBs in the first and in the second column ((1) t (R) and (2) t (R), respectively). In particular, multilinear regression (MLR) combined with genetic algorithm (GA) variable selection is performed to extract two small subsets of predictors for (1) t (R) and (2) t (R) from a large set of theoretical molecular descriptors provided by the popular software Dragon, which after removal of highly correlated or almost constant variables consists of 237 structure-related quantities. Based on GA-MLR analysis, a four-dimensional and a five-dimensional relationship modelling (1) t (R) and (2) t (R), respectively, are identified. Single-response partial least square (PLS-1) regression is alternatively applied to independently model (1) t (R) and (2) t (R) without the need for preliminary GA variable selection. Further, we explore the possibility of predicting the two-dimensional chromatogram of PCBs in a single calibration procedure by using a two-response PLS (PLS-2) model or a feed-forward artificial neural network (ANN) with two output neurons. In the first case, regression is carried out on the full set of 237 descriptors, while the variables previously selected by GA-MLR are initially considered as ANN inputs and subjected to a sensitivity analysis to remove the redundant ones. Results show PLS-1 regression exhibits a noticeably better descriptive and predictive performance than the other investigated approaches. The observed values of determination coefficients for (1) t (R) and (2) t (R) in calibration (0.9999 and 0.9993, respectively) and prediction (0.9987 and 0.9793, respectively) provided by PLS-1 demonstrate that GC×GC behaviour of PCBs is properly modelled. In particular, the predicted two-dimensional GC×GC chromatogram of 139 PCBs not involved in the calibration stage closely resembles the experimental one. Based on the above lines of evidence, the proposed approach ensures accurate simulation of the whole GC×GC chromatogram of PCBs using experimental determination of only 1/3 retention data of representative congeners.
51 schema:genre research_article
52 schema:inLanguage en
53 schema:isAccessibleForFree false
54 schema:isPartOf Nd7dcb99538504b8e97faf6f5d2d71c65
55 Nec1e94ad70644ac6b7a3e9cd712ada47
56 sg:journal.1357342
57 schema:name Retention modelling of polychlorinated biphenyls in comprehensive two-dimensional gas chromatography
58 schema:pagination 903-913
59 schema:productId N2db42ac0315b426c9e191172837db326
60 N2e79b60b535744d2af0b810dea1e7336
61 N6be5570129d54879b7ba42e36de6a6e9
62 N8f19a4c348cd49d3b3609e0e9abad1a5
63 Nf9ab2b08f05147d99c978fdb1299181e
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016702940
65 https://doi.org/10.1007/s00216-010-4326-z
66 schema:sdDatePublished 2019-04-10T21:50
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher Na42a2e24d5764001b109ea67c6b4befa
69 schema:url http://link.springer.com/10.1007%2Fs00216-010-4326-z
70 sgo:license sg:explorer/license/
71 sgo:sdDataset articles
72 rdf:type schema:ScholarlyArticle
73 N0285d02bcc984233803af7d7239ceaef rdf:first sg:person.01334361140.99
74 rdf:rest rdf:nil
75 N072434aec3f74b06b911c45ab2d65952 rdf:first sg:person.01206413466.11
76 rdf:rest N39ff623d20da4cc8ae158b68ee1b0d88
77 N0bc0710b724a4cb2a47838503a7ea3bc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Polychlorinated Biphenyls
79 rdf:type schema:DefinedTerm
80 N1d60258e8ae44ea9b30c711148900da8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Models, Chemical
82 rdf:type schema:DefinedTerm
83 N2552d312f4ea41aaa710e88595ec89fb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Regression Analysis
85 rdf:type schema:DefinedTerm
86 N2db42ac0315b426c9e191172837db326 schema:name pubmed_id
87 schema:value 20972553
88 rdf:type schema:PropertyValue
89 N2e79b60b535744d2af0b810dea1e7336 schema:name readcube_id
90 schema:value 4f9531b89450997593014ef9bcb698d7a7b82d6159047e0854d80bbadaf56987
91 rdf:type schema:PropertyValue
92 N39ff623d20da4cc8ae158b68ee1b0d88 rdf:first sg:person.0771416460.05
93 rdf:rest N0285d02bcc984233803af7d7239ceaef
94 N6be5570129d54879b7ba42e36de6a6e9 schema:name doi
95 schema:value 10.1007/s00216-010-4326-z
96 rdf:type schema:PropertyValue
97 N7b70fc74ad11409a89e4e8fda1dce579 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Least-Squares Analysis
99 rdf:type schema:DefinedTerm
100 N7ea7e7dce4b4469986087e60689fb6d3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Neural Networks (Computer)
102 rdf:type schema:DefinedTerm
103 N8f19a4c348cd49d3b3609e0e9abad1a5 schema:name dimensions_id
104 schema:value pub.1016702940
105 rdf:type schema:PropertyValue
106 N9648b142a28d4799a987e8c437b14d8b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Chromatography, Gas
108 rdf:type schema:DefinedTerm
109 Na42a2e24d5764001b109ea67c6b4befa schema:name Springer Nature - SN SciGraph project
110 rdf:type schema:Organization
111 Nd7dcb99538504b8e97faf6f5d2d71c65 schema:issueNumber 2
112 rdf:type schema:PublicationIssue
113 Ne72f2c03154b414ba470a57f53db3457 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Algorithms
115 rdf:type schema:DefinedTerm
116 Nec1e94ad70644ac6b7a3e9cd712ada47 schema:volumeNumber 399
117 rdf:type schema:PublicationVolume
118 Nf9ab2b08f05147d99c978fdb1299181e schema:name nlm_unique_id
119 schema:value 101134327
120 rdf:type schema:PropertyValue
121 Nfd3ba68ebf0f415596163038e68d7005 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Models, Statistical
123 rdf:type schema:DefinedTerm
124 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
125 schema:name Information and Computing Sciences
126 rdf:type schema:DefinedTerm
127 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
128 schema:name Artificial Intelligence and Image Processing
129 rdf:type schema:DefinedTerm
130 sg:journal.1357342 schema:issn 1618-2642
131 1618-2650
132 schema:name Analytical and Bioanalytical Chemistry
133 rdf:type schema:Periodical
134 sg:person.01206413466.11 schema:affiliation https://www.grid.ac/institutes/grid.158820.6
135 schema:familyName D’Archivio
136 schema:givenName Angelo Antonio
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206413466.11
138 rdf:type schema:Person
139 sg:person.01334361140.99 schema:affiliation https://www.grid.ac/institutes/grid.158820.6
140 schema:familyName Ruggieri
141 schema:givenName Fabrizio
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334361140.99
143 rdf:type schema:Person
144 sg:person.0771416460.05 schema:affiliation https://www.grid.ac/institutes/grid.158820.6
145 schema:familyName Incani
146 schema:givenName Angela
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771416460.05
148 rdf:type schema:Person
149 sg:pub.10.1007/s00216-007-1188-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015670912
150 https://doi.org/10.1007/s00216-007-1188-0
151 rdf:type schema:CreativeWork
152 sg:pub.10.1007/s10947-006-0036-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1005948042
153 https://doi.org/10.1007/s10947-006-0036-y
154 rdf:type schema:CreativeWork
155 sg:pub.10.1365/s10337-009-1233-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003860324
156 https://doi.org/10.1365/s10337-009-1233-6
157 rdf:type schema:CreativeWork
158 https://app.dimensions.ai/details/publication/pub.1109505823 schema:CreativeWork
159 https://doi.org/10.1002/9783527613106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109505823
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1002/jssc.200301592 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009073013
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1002/jssc.200401933 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008439111
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1002/jssc.200700546 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005412797
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.chemosphere.2005.11.057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005219203
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.chroma.2003.08.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004719681
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.chroma.2003.08.100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032659948
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.chroma.2004.04.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039466067
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.chroma.2005.05.105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052986304
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.chroma.2006.06.074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040203625
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.chroma.2007.03.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000596248
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.chroma.2007.09.058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006608596
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.chroma.2008.07.060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043844106
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.chroma.2009.06.049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032366011
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.envpol.2005.08.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011103476
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.scitotenv.2004.03.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046749483
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/j.trac.2007.08.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042268630
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/s0021-9673(02)00327-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001770100
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/s0021-9673(03)00242-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018882108
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/s0021-9673(98)00649-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011559821
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/s0021-9673(99)00063-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030521524
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/s0165-9936(98)00011-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008249722
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/s0169-7439(01)00155-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041387192
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1016/s0169-7439(97)00079-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034095402
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1016/s0169-7439(98)00053-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017468504
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1016/s0169-7439(98)00118-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1022152160
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1021/ac00161a007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054977022
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1021/ac00161a008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054977023
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1021/ac051051n schema:sameAs https://app.dimensions.ai/details/publication/pub.1023808116
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1021/cr068412z schema:sameAs https://app.dimensions.ai/details/publication/pub.1053890723
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1021/es051725b schema:sameAs https://app.dimensions.ai/details/publication/pub.1055498579
220 rdf:type schema:CreativeWork
221 https://doi.org/10.3390/i8111125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031740767
222 rdf:type schema:CreativeWork
223 https://www.grid.ac/institutes/grid.158820.6 schema:alternateName University of L'Aquila
224 schema:name Dipartimento di Chimica, Ingegneria Chimica e Materiali, Università degli Studi dell’Aquila, Via Vetoio, 67010, Coppito, L’Aquila, Italy
225 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...