Determination of amylose content in starch using Raman spectroscopy and multivariate calibration analysis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-08

AUTHORS

Mariana R. Almeida, Rafael S. Alves, Laura B. L. R. Nascimbem, Rodrigo Stephani, Ronei J. Poppi, Luiz Fernando C. de Oliveira

ABSTRACT

Fourier transform Raman spectroscopy and chemometric tools have been used for exploratory analysis of pure corn and cassava starch samples and mixtures of both starches, as well as for the quantification of amylose content in corn and cassava starch samples. The exploratory analysis using principal component analysis shows that two natural groups of similar samples can be obtained, according to the amylose content, and consequently the botanical origins. The Raman band at 480 cm(-1), assigned to the ring vibration of starches, has the major contribution to the separation of the corn and cassava starch samples. This region was used as a marker to identify the presence of starch in different samples, as well as to characterize amylose and amylopectin. Two calibration models were developed based on partial least squares regression involving pure corn and cassava, and a third model with both starch samples was also built; the results were compared with the results of the standard colorimetric method. The samples were separated into two groups of calibration and validation by employing the Kennard-Stone algorithm and the optimum number of latent variables was chosen by the root mean square error of cross-validation obtained from the calibration set by internal validation (leave one out). The performance of each model was evaluated by the root mean square errors of calibration and prediction, and the results obtained indicate that Fourier transform Raman spectroscopy can be used for rapid determination of apparent amylose in starch samples with prediction errors similar to those of the standard method. More... »

PAGES

2693-2701

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00216-010-3566-2

DOI

http://dx.doi.org/10.1007/s00216-010-3566-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037442335

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20213166


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0301", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Analytical Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amylose", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Food Industry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Manihot", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Multivariate Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Principal Component Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Quality Control", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Spectrum Analysis, Raman", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Starch", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Zea mays", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Universidade Federal de Juiz de Fora", 
          "id": "https://www.grid.ac/institutes/grid.411198.4", 
          "name": [
            "N\u00facleo de Espectroscopia e Estrutura Molecular (NEEM), Departamento de Qu\u00edmica, Universidade Federal de Juiz de Fora, 36036-330, Juiz de Fora, MG, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Almeida", 
        "givenName": "Mariana R.", 
        "id": "sg:person.01144441321.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144441321.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universidade Federal de Juiz de Fora", 
          "id": "https://www.grid.ac/institutes/grid.411198.4", 
          "name": [
            "N\u00facleo de Espectroscopia e Estrutura Molecular (NEEM), Departamento de Qu\u00edmica, Universidade Federal de Juiz de Fora, 36036-330, Juiz de Fora, MG, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alves", 
        "givenName": "Rafael S.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State University of Campinas", 
          "id": "https://www.grid.ac/institutes/grid.411087.b", 
          "name": [
            "Laborat\u00f3rio de Quimiometria em Qu\u00edmica Anal\u00edtica (LAQQA), Instituto de Qu\u00edmica, UNICAMP, cx. Postal 6154, 13083-970, Campinas, SP, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nascimbem", 
        "givenName": "Laura B. L. R.", 
        "id": "sg:person.01221130575.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221130575.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Gemacom Com\u00e9rcio e Servi\u00e7os LTDA, 36092-050, Juiz de Fora, MG, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stephani", 
        "givenName": "Rodrigo", 
        "id": "sg:person.010221400151.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010221400151.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State University of Campinas", 
          "id": "https://www.grid.ac/institutes/grid.411087.b", 
          "name": [
            "Laborat\u00f3rio de Quimiometria em Qu\u00edmica Anal\u00edtica (LAQQA), Instituto de Qu\u00edmica, UNICAMP, cx. Postal 6154, 13083-970, Campinas, SP, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Poppi", 
        "givenName": "Ronei J.", 
        "id": "sg:person.0754342705.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754342705.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universidade Federal de Juiz de Fora", 
          "id": "https://www.grid.ac/institutes/grid.411198.4", 
          "name": [
            "N\u00facleo de Espectroscopia e Estrutura Molecular (NEEM), Departamento de Qu\u00edmica, Universidade Federal de Juiz de Fora, 36036-330, Juiz de Fora, MG, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Oliveira", 
        "givenName": "Luiz Fernando C.", 
        "id": "sg:person.014507101642.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014507101642.94"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.aca.2007.04.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001001122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0166-1280(96)04881-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007933698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0924-2031(99)00080-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008176215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0924-2244(02)00243-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008230118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2860(00)00590-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013097152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2860(00)00590-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013097152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aca.2005.02.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016621006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/y91-011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017936144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0141-8130(98)00040-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019257483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1590/s0100-40422008000700004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021076164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.carres.2005.08.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025126920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jrs.2125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026904349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0003-2670(99)00827-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030744780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b003805i", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030754726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0924-2031(01)00107-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031246111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0924-2031(01)00107-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031246111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.saa.2006.11.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037812273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.carbpol.2008.12.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041350178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.saa.2004.10.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043130533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molstruc.2005.05.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044150253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0144-8617(03)00158-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046170580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0144-8617(03)00158-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046170580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aca.2004.10.055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051680620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0144-8617(01)00304-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052146631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/star.200700612", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052989819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0308-8146(01)00292-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053435300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac60214a047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055048783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jf011652p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055899588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jf011652p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055899588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jf0510440", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055903937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jf0510440", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055903937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00401706.1969.10490666", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058284032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1094/cchem.2004.81.4.429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060075639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1366/0003702021954881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065255832"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1366/0003702021954881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065255832"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-08", 
    "datePublishedReg": "2010-08-01", 
    "description": "Fourier transform Raman spectroscopy and chemometric tools have been used for exploratory analysis of pure corn and cassava starch samples and mixtures of both starches, as well as for the quantification of amylose content in corn and cassava starch samples. The exploratory analysis using principal component analysis shows that two natural groups of similar samples can be obtained, according to the amylose content, and consequently the botanical origins. The Raman band at 480 cm(-1), assigned to the ring vibration of starches, has the major contribution to the separation of the corn and cassava starch samples. This region was used as a marker to identify the presence of starch in different samples, as well as to characterize amylose and amylopectin. Two calibration models were developed based on partial least squares regression involving pure corn and cassava, and a third model with both starch samples was also built; the results were compared with the results of the standard colorimetric method. The samples were separated into two groups of calibration and validation by employing the Kennard-Stone algorithm and the optimum number of latent variables was chosen by the root mean square error of cross-validation obtained from the calibration set by internal validation (leave one out). The performance of each model was evaluated by the root mean square errors of calibration and prediction, and the results obtained indicate that Fourier transform Raman spectroscopy can be used for rapid determination of apparent amylose in starch samples with prediction errors similar to those of the standard method.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00216-010-3566-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1357342", 
        "issn": [
          "1618-2642", 
          "1618-2650"
        ], 
        "name": "Analytical and Bioanalytical Chemistry", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "397"
      }
    ], 
    "name": "Determination of amylose content in starch using Raman spectroscopy and multivariate calibration analysis", 
    "pagination": "2693-2701", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b25bec7f7279844ffaf8301746670b765582b4791f1c2a1c55c954867cc2bec7"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20213166"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101134327"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00216-010-3566-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037442335"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00216-010-3566-2", 
      "https://app.dimensions.ai/details/publication/pub.1037442335"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89807_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00216-010-3566-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00216-010-3566-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00216-010-3566-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00216-010-3566-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00216-010-3566-2'


 

This table displays all metadata directly associated to this object as RDF triples.

231 TRIPLES      21 PREDICATES      67 URIs      30 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00216-010-3566-2 schema:about N099eeb6c643e4be68914d09ef727959a
2 N100503b2bd3445d9994c7a40893c264a
3 N2b6142ba1430465091822fae8339e2d0
4 N31ed64f034244a8e831fa5d77f77988b
5 N5167fd0dc790431e9c7eba24ebb24ee5
6 N5b9e277c45f347419e3831a814c1788f
7 Nbce3db65add54850977033996e7872b4
8 Nebb596d8159648c39191337cbd328e2f
9 Nfa8dfa2adc6948c496ae6b89526546cc
10 anzsrc-for:03
11 anzsrc-for:0301
12 schema:author Nc6ebb84fbfd44781a9fdf4fdfe3d4e16
13 schema:citation https://doi.org/10.1002/jrs.2125
14 https://doi.org/10.1002/star.200700612
15 https://doi.org/10.1016/j.aca.2004.10.055
16 https://doi.org/10.1016/j.aca.2005.02.039
17 https://doi.org/10.1016/j.aca.2007.04.036
18 https://doi.org/10.1016/j.carbpol.2008.12.015
19 https://doi.org/10.1016/j.carres.2005.08.018
20 https://doi.org/10.1016/j.molstruc.2005.05.015
21 https://doi.org/10.1016/j.saa.2004.10.038
22 https://doi.org/10.1016/j.saa.2006.11.032
23 https://doi.org/10.1016/s0003-2670(99)00827-2
24 https://doi.org/10.1016/s0022-2860(00)00590-1
25 https://doi.org/10.1016/s0141-8130(98)00040-3
26 https://doi.org/10.1016/s0144-8617(01)00304-6
27 https://doi.org/10.1016/s0144-8617(03)00158-9
28 https://doi.org/10.1016/s0166-1280(96)04881-6
29 https://doi.org/10.1016/s0308-8146(01)00292-8
30 https://doi.org/10.1016/s0924-2031(01)00107-2
31 https://doi.org/10.1016/s0924-2031(99)00080-6
32 https://doi.org/10.1016/s0924-2244(02)00243-1
33 https://doi.org/10.1021/ac60214a047
34 https://doi.org/10.1021/jf011652p
35 https://doi.org/10.1021/jf0510440
36 https://doi.org/10.1039/b003805i
37 https://doi.org/10.1080/00401706.1969.10490666
38 https://doi.org/10.1094/cchem.2004.81.4.429
39 https://doi.org/10.1139/y91-011
40 https://doi.org/10.1366/0003702021954881
41 https://doi.org/10.1590/s0100-40422008000700004
42 schema:datePublished 2010-08
43 schema:datePublishedReg 2010-08-01
44 schema:description Fourier transform Raman spectroscopy and chemometric tools have been used for exploratory analysis of pure corn and cassava starch samples and mixtures of both starches, as well as for the quantification of amylose content in corn and cassava starch samples. The exploratory analysis using principal component analysis shows that two natural groups of similar samples can be obtained, according to the amylose content, and consequently the botanical origins. The Raman band at 480 cm(-1), assigned to the ring vibration of starches, has the major contribution to the separation of the corn and cassava starch samples. This region was used as a marker to identify the presence of starch in different samples, as well as to characterize amylose and amylopectin. Two calibration models were developed based on partial least squares regression involving pure corn and cassava, and a third model with both starch samples was also built; the results were compared with the results of the standard colorimetric method. The samples were separated into two groups of calibration and validation by employing the Kennard-Stone algorithm and the optimum number of latent variables was chosen by the root mean square error of cross-validation obtained from the calibration set by internal validation (leave one out). The performance of each model was evaluated by the root mean square errors of calibration and prediction, and the results obtained indicate that Fourier transform Raman spectroscopy can be used for rapid determination of apparent amylose in starch samples with prediction errors similar to those of the standard method.
45 schema:genre research_article
46 schema:inLanguage en
47 schema:isAccessibleForFree false
48 schema:isPartOf Nb0bcfb013d304ee4a1441843cbf70e4f
49 Nbdf16ddac686413e9fca89cd1b7d818e
50 sg:journal.1357342
51 schema:name Determination of amylose content in starch using Raman spectroscopy and multivariate calibration analysis
52 schema:pagination 2693-2701
53 schema:productId N0c595c26b2be49eb99d34f5ca275447e
54 N862f5081b91144ae81f51545a62dc0f7
55 N8754e9f89b414d639ef503ddb194aa43
56 Nab29d8ad26f64488b5a97842f34ff5e3
57 Nc299a94198a445a48e042907482a323e
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037442335
59 https://doi.org/10.1007/s00216-010-3566-2
60 schema:sdDatePublished 2019-04-11T09:57
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher N19355979e96d4029b67ea89e0d7b2cf0
63 schema:url http://link.springer.com/10.1007%2Fs00216-010-3566-2
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N099eeb6c643e4be68914d09ef727959a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Starch
69 rdf:type schema:DefinedTerm
70 N0c595c26b2be49eb99d34f5ca275447e schema:name doi
71 schema:value 10.1007/s00216-010-3566-2
72 rdf:type schema:PropertyValue
73 N0ec1c58bc2e54780a178e4132476115c rdf:first Nc25803304e754e9a89a39e9bc731a8fe
74 rdf:rest N20b912ba84ff4ff28a35defca651c641
75 N100503b2bd3445d9994c7a40893c264a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Principal Component Analysis
77 rdf:type schema:DefinedTerm
78 N19355979e96d4029b67ea89e0d7b2cf0 schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 N20b912ba84ff4ff28a35defca651c641 rdf:first sg:person.01221130575.03
81 rdf:rest N751d84a5ed354f41b8fc2a0badb52c17
82 N2b6142ba1430465091822fae8339e2d0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Spectrum Analysis, Raman
84 rdf:type schema:DefinedTerm
85 N31ed64f034244a8e831fa5d77f77988b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Quality Control
87 rdf:type schema:DefinedTerm
88 N4f36a99d99c048808207c47925d7ae92 rdf:first sg:person.0754342705.30
89 rdf:rest N79bdefbdcb0a4bcb857ac62d7c80f6f3
90 N5167fd0dc790431e9c7eba24ebb24ee5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Amylose
92 rdf:type schema:DefinedTerm
93 N5b9e277c45f347419e3831a814c1788f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Food Industry
95 rdf:type schema:DefinedTerm
96 N751d84a5ed354f41b8fc2a0badb52c17 rdf:first sg:person.010221400151.42
97 rdf:rest N4f36a99d99c048808207c47925d7ae92
98 N79bdefbdcb0a4bcb857ac62d7c80f6f3 rdf:first sg:person.014507101642.94
99 rdf:rest rdf:nil
100 N862f5081b91144ae81f51545a62dc0f7 schema:name readcube_id
101 schema:value b25bec7f7279844ffaf8301746670b765582b4791f1c2a1c55c954867cc2bec7
102 rdf:type schema:PropertyValue
103 N8754e9f89b414d639ef503ddb194aa43 schema:name pubmed_id
104 schema:value 20213166
105 rdf:type schema:PropertyValue
106 Nab29d8ad26f64488b5a97842f34ff5e3 schema:name dimensions_id
107 schema:value pub.1037442335
108 rdf:type schema:PropertyValue
109 Nb0bcfb013d304ee4a1441843cbf70e4f schema:issueNumber 7
110 rdf:type schema:PublicationIssue
111 Nbce3db65add54850977033996e7872b4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Manihot
113 rdf:type schema:DefinedTerm
114 Nbdf16ddac686413e9fca89cd1b7d818e schema:volumeNumber 397
115 rdf:type schema:PublicationVolume
116 Nc25803304e754e9a89a39e9bc731a8fe schema:affiliation https://www.grid.ac/institutes/grid.411198.4
117 schema:familyName Alves
118 schema:givenName Rafael S.
119 rdf:type schema:Person
120 Nc299a94198a445a48e042907482a323e schema:name nlm_unique_id
121 schema:value 101134327
122 rdf:type schema:PropertyValue
123 Nc6ebb84fbfd44781a9fdf4fdfe3d4e16 rdf:first sg:person.01144441321.77
124 rdf:rest N0ec1c58bc2e54780a178e4132476115c
125 Nebb596d8159648c39191337cbd328e2f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Multivariate Analysis
127 rdf:type schema:DefinedTerm
128 Ned0463254694467f9f900b90d2711eb3 schema:name Gemacom Comércio e Serviços LTDA, 36092-050, Juiz de Fora, MG, Brazil
129 rdf:type schema:Organization
130 Nfa8dfa2adc6948c496ae6b89526546cc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Zea mays
132 rdf:type schema:DefinedTerm
133 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
134 schema:name Chemical Sciences
135 rdf:type schema:DefinedTerm
136 anzsrc-for:0301 schema:inDefinedTermSet anzsrc-for:
137 schema:name Analytical Chemistry
138 rdf:type schema:DefinedTerm
139 sg:journal.1357342 schema:issn 1618-2642
140 1618-2650
141 schema:name Analytical and Bioanalytical Chemistry
142 rdf:type schema:Periodical
143 sg:person.010221400151.42 schema:affiliation Ned0463254694467f9f900b90d2711eb3
144 schema:familyName Stephani
145 schema:givenName Rodrigo
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010221400151.42
147 rdf:type schema:Person
148 sg:person.01144441321.77 schema:affiliation https://www.grid.ac/institutes/grid.411198.4
149 schema:familyName Almeida
150 schema:givenName Mariana R.
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144441321.77
152 rdf:type schema:Person
153 sg:person.01221130575.03 schema:affiliation https://www.grid.ac/institutes/grid.411087.b
154 schema:familyName Nascimbem
155 schema:givenName Laura B. L. R.
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221130575.03
157 rdf:type schema:Person
158 sg:person.014507101642.94 schema:affiliation https://www.grid.ac/institutes/grid.411198.4
159 schema:familyName de Oliveira
160 schema:givenName Luiz Fernando C.
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014507101642.94
162 rdf:type schema:Person
163 sg:person.0754342705.30 schema:affiliation https://www.grid.ac/institutes/grid.411087.b
164 schema:familyName Poppi
165 schema:givenName Ronei J.
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754342705.30
167 rdf:type schema:Person
168 https://doi.org/10.1002/jrs.2125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026904349
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1002/star.200700612 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052989819
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.aca.2004.10.055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051680620
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.aca.2005.02.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016621006
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.aca.2007.04.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001001122
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.carbpol.2008.12.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041350178
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.carres.2005.08.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025126920
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.molstruc.2005.05.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044150253
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.saa.2004.10.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043130533
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.saa.2006.11.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037812273
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/s0003-2670(99)00827-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030744780
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/s0022-2860(00)00590-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013097152
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/s0141-8130(98)00040-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019257483
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/s0144-8617(01)00304-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052146631
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/s0144-8617(03)00158-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046170580
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/s0166-1280(96)04881-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007933698
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/s0308-8146(01)00292-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053435300
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/s0924-2031(01)00107-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031246111
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1016/s0924-2031(99)00080-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008176215
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1016/s0924-2244(02)00243-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008230118
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1021/ac60214a047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055048783
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1021/jf011652p schema:sameAs https://app.dimensions.ai/details/publication/pub.1055899588
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1021/jf0510440 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055903937
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1039/b003805i schema:sameAs https://app.dimensions.ai/details/publication/pub.1030754726
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1080/00401706.1969.10490666 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058284032
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1094/cchem.2004.81.4.429 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060075639
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1139/y91-011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017936144
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1366/0003702021954881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065255832
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1590/s0100-40422008000700004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021076164
225 rdf:type schema:CreativeWork
226 https://www.grid.ac/institutes/grid.411087.b schema:alternateName State University of Campinas
227 schema:name Laboratório de Quimiometria em Química Analítica (LAQQA), Instituto de Química, UNICAMP, cx. Postal 6154, 13083-970, Campinas, SP, Brazil
228 rdf:type schema:Organization
229 https://www.grid.ac/institutes/grid.411198.4 schema:alternateName Universidade Federal de Juiz de Fora
230 schema:name Núcleo de Espectroscopia e Estrutura Molecular (NEEM), Departamento de Química, Universidade Federal de Juiz de Fora, 36036-330, Juiz de Fora, MG, Brazil
231 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...