Determination of amylose content in starch using Raman spectroscopy and multivariate calibration analysis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-08

AUTHORS

Mariana R. Almeida, Rafael S. Alves, Laura B. L. R. Nascimbem, Rodrigo Stephani, Ronei J. Poppi, Luiz Fernando C. de Oliveira

ABSTRACT

Fourier transform Raman spectroscopy and chemometric tools have been used for exploratory analysis of pure corn and cassava starch samples and mixtures of both starches, as well as for the quantification of amylose content in corn and cassava starch samples. The exploratory analysis using principal component analysis shows that two natural groups of similar samples can be obtained, according to the amylose content, and consequently the botanical origins. The Raman band at 480 cm(-1), assigned to the ring vibration of starches, has the major contribution to the separation of the corn and cassava starch samples. This region was used as a marker to identify the presence of starch in different samples, as well as to characterize amylose and amylopectin. Two calibration models were developed based on partial least squares regression involving pure corn and cassava, and a third model with both starch samples was also built; the results were compared with the results of the standard colorimetric method. The samples were separated into two groups of calibration and validation by employing the Kennard-Stone algorithm and the optimum number of latent variables was chosen by the root mean square error of cross-validation obtained from the calibration set by internal validation (leave one out). The performance of each model was evaluated by the root mean square errors of calibration and prediction, and the results obtained indicate that Fourier transform Raman spectroscopy can be used for rapid determination of apparent amylose in starch samples with prediction errors similar to those of the standard method. More... »

PAGES

2693-2701

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00216-010-3566-2

DOI

http://dx.doi.org/10.1007/s00216-010-3566-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037442335

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20213166


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0301", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Analytical Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amylose", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Food Industry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Manihot", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Multivariate Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Principal Component Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Quality Control", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Spectrum Analysis, Raman", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Starch", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Zea mays", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Universidade Federal de Juiz de Fora", 
          "id": "https://www.grid.ac/institutes/grid.411198.4", 
          "name": [
            "N\u00facleo de Espectroscopia e Estrutura Molecular (NEEM), Departamento de Qu\u00edmica, Universidade Federal de Juiz de Fora, 36036-330, Juiz de Fora, MG, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Almeida", 
        "givenName": "Mariana R.", 
        "id": "sg:person.01144441321.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144441321.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universidade Federal de Juiz de Fora", 
          "id": "https://www.grid.ac/institutes/grid.411198.4", 
          "name": [
            "N\u00facleo de Espectroscopia e Estrutura Molecular (NEEM), Departamento de Qu\u00edmica, Universidade Federal de Juiz de Fora, 36036-330, Juiz de Fora, MG, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alves", 
        "givenName": "Rafael S.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State University of Campinas", 
          "id": "https://www.grid.ac/institutes/grid.411087.b", 
          "name": [
            "Laborat\u00f3rio de Quimiometria em Qu\u00edmica Anal\u00edtica (LAQQA), Instituto de Qu\u00edmica, UNICAMP, cx. Postal 6154, 13083-970, Campinas, SP, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nascimbem", 
        "givenName": "Laura B. L. R.", 
        "id": "sg:person.01221130575.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221130575.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Gemacom Com\u00e9rcio e Servi\u00e7os LTDA, 36092-050, Juiz de Fora, MG, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stephani", 
        "givenName": "Rodrigo", 
        "id": "sg:person.010221400151.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010221400151.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State University of Campinas", 
          "id": "https://www.grid.ac/institutes/grid.411087.b", 
          "name": [
            "Laborat\u00f3rio de Quimiometria em Qu\u00edmica Anal\u00edtica (LAQQA), Instituto de Qu\u00edmica, UNICAMP, cx. Postal 6154, 13083-970, Campinas, SP, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Poppi", 
        "givenName": "Ronei J.", 
        "id": "sg:person.0754342705.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754342705.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universidade Federal de Juiz de Fora", 
          "id": "https://www.grid.ac/institutes/grid.411198.4", 
          "name": [
            "N\u00facleo de Espectroscopia e Estrutura Molecular (NEEM), Departamento de Qu\u00edmica, Universidade Federal de Juiz de Fora, 36036-330, Juiz de Fora, MG, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Oliveira", 
        "givenName": "Luiz Fernando C.", 
        "id": "sg:person.014507101642.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014507101642.94"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.aca.2007.04.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001001122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0166-1280(96)04881-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007933698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0924-2031(99)00080-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008176215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0924-2244(02)00243-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008230118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2860(00)00590-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013097152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2860(00)00590-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013097152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aca.2005.02.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016621006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/y91-011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017936144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0141-8130(98)00040-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019257483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1590/s0100-40422008000700004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021076164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.carres.2005.08.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025126920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jrs.2125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026904349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0003-2670(99)00827-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030744780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b003805i", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030754726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0924-2031(01)00107-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031246111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0924-2031(01)00107-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031246111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.saa.2006.11.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037812273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.carbpol.2008.12.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041350178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.saa.2004.10.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043130533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molstruc.2005.05.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044150253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0144-8617(03)00158-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046170580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0144-8617(03)00158-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046170580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aca.2004.10.055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051680620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0144-8617(01)00304-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052146631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/star.200700612", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052989819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0308-8146(01)00292-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053435300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac60214a047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055048783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jf011652p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055899588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jf011652p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055899588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jf0510440", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055903937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jf0510440", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055903937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00401706.1969.10490666", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058284032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1094/cchem.2004.81.4.429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060075639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1366/0003702021954881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065255832"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1366/0003702021954881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065255832"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-08", 
    "datePublishedReg": "2010-08-01", 
    "description": "Fourier transform Raman spectroscopy and chemometric tools have been used for exploratory analysis of pure corn and cassava starch samples and mixtures of both starches, as well as for the quantification of amylose content in corn and cassava starch samples. The exploratory analysis using principal component analysis shows that two natural groups of similar samples can be obtained, according to the amylose content, and consequently the botanical origins. The Raman band at 480 cm(-1), assigned to the ring vibration of starches, has the major contribution to the separation of the corn and cassava starch samples. This region was used as a marker to identify the presence of starch in different samples, as well as to characterize amylose and amylopectin. Two calibration models were developed based on partial least squares regression involving pure corn and cassava, and a third model with both starch samples was also built; the results were compared with the results of the standard colorimetric method. The samples were separated into two groups of calibration and validation by employing the Kennard-Stone algorithm and the optimum number of latent variables was chosen by the root mean square error of cross-validation obtained from the calibration set by internal validation (leave one out). The performance of each model was evaluated by the root mean square errors of calibration and prediction, and the results obtained indicate that Fourier transform Raman spectroscopy can be used for rapid determination of apparent amylose in starch samples with prediction errors similar to those of the standard method.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00216-010-3566-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1357342", 
        "issn": [
          "1618-2642", 
          "1618-2650"
        ], 
        "name": "Analytical and Bioanalytical Chemistry", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "397"
      }
    ], 
    "name": "Determination of amylose content in starch using Raman spectroscopy and multivariate calibration analysis", 
    "pagination": "2693-2701", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b25bec7f7279844ffaf8301746670b765582b4791f1c2a1c55c954867cc2bec7"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20213166"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101134327"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00216-010-3566-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037442335"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00216-010-3566-2", 
      "https://app.dimensions.ai/details/publication/pub.1037442335"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89807_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00216-010-3566-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00216-010-3566-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00216-010-3566-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00216-010-3566-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00216-010-3566-2'


 

This table displays all metadata directly associated to this object as RDF triples.

231 TRIPLES      21 PREDICATES      67 URIs      30 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00216-010-3566-2 schema:about N2b770817e85b461195f8296f66a31a76
2 N4f428883bc254ab0b5acf96f90ff7168
3 N7d968c0dbd8a46b3b2228665eb42f8ef
4 N857c32ccb4394a03868fdbec51aca81c
5 Na525ab7768dd4637a90454cf306a63d9
6 Nbe7ae6e12dda47ada7c646dd5936d1b4
7 Ncb0d9ec5ab2f47f7ba261bbe17352400
8 Ncf1e634024904b5f9301d18852219945
9 Ne433a1340a014815836029e2cdad6dee
10 anzsrc-for:03
11 anzsrc-for:0301
12 schema:author N02c5146ed53c4a55afa3c80bd083b7da
13 schema:citation https://doi.org/10.1002/jrs.2125
14 https://doi.org/10.1002/star.200700612
15 https://doi.org/10.1016/j.aca.2004.10.055
16 https://doi.org/10.1016/j.aca.2005.02.039
17 https://doi.org/10.1016/j.aca.2007.04.036
18 https://doi.org/10.1016/j.carbpol.2008.12.015
19 https://doi.org/10.1016/j.carres.2005.08.018
20 https://doi.org/10.1016/j.molstruc.2005.05.015
21 https://doi.org/10.1016/j.saa.2004.10.038
22 https://doi.org/10.1016/j.saa.2006.11.032
23 https://doi.org/10.1016/s0003-2670(99)00827-2
24 https://doi.org/10.1016/s0022-2860(00)00590-1
25 https://doi.org/10.1016/s0141-8130(98)00040-3
26 https://doi.org/10.1016/s0144-8617(01)00304-6
27 https://doi.org/10.1016/s0144-8617(03)00158-9
28 https://doi.org/10.1016/s0166-1280(96)04881-6
29 https://doi.org/10.1016/s0308-8146(01)00292-8
30 https://doi.org/10.1016/s0924-2031(01)00107-2
31 https://doi.org/10.1016/s0924-2031(99)00080-6
32 https://doi.org/10.1016/s0924-2244(02)00243-1
33 https://doi.org/10.1021/ac60214a047
34 https://doi.org/10.1021/jf011652p
35 https://doi.org/10.1021/jf0510440
36 https://doi.org/10.1039/b003805i
37 https://doi.org/10.1080/00401706.1969.10490666
38 https://doi.org/10.1094/cchem.2004.81.4.429
39 https://doi.org/10.1139/y91-011
40 https://doi.org/10.1366/0003702021954881
41 https://doi.org/10.1590/s0100-40422008000700004
42 schema:datePublished 2010-08
43 schema:datePublishedReg 2010-08-01
44 schema:description Fourier transform Raman spectroscopy and chemometric tools have been used for exploratory analysis of pure corn and cassava starch samples and mixtures of both starches, as well as for the quantification of amylose content in corn and cassava starch samples. The exploratory analysis using principal component analysis shows that two natural groups of similar samples can be obtained, according to the amylose content, and consequently the botanical origins. The Raman band at 480 cm(-1), assigned to the ring vibration of starches, has the major contribution to the separation of the corn and cassava starch samples. This region was used as a marker to identify the presence of starch in different samples, as well as to characterize amylose and amylopectin. Two calibration models were developed based on partial least squares regression involving pure corn and cassava, and a third model with both starch samples was also built; the results were compared with the results of the standard colorimetric method. The samples were separated into two groups of calibration and validation by employing the Kennard-Stone algorithm and the optimum number of latent variables was chosen by the root mean square error of cross-validation obtained from the calibration set by internal validation (leave one out). The performance of each model was evaluated by the root mean square errors of calibration and prediction, and the results obtained indicate that Fourier transform Raman spectroscopy can be used for rapid determination of apparent amylose in starch samples with prediction errors similar to those of the standard method.
45 schema:genre research_article
46 schema:inLanguage en
47 schema:isAccessibleForFree false
48 schema:isPartOf N0d284a42b1914f3c9c7ac86a3d3615c3
49 Nc5d394a097fc45cc80a04c4e25ec5dff
50 sg:journal.1357342
51 schema:name Determination of amylose content in starch using Raman spectroscopy and multivariate calibration analysis
52 schema:pagination 2693-2701
53 schema:productId N0a047c01f87f422eabf7615cf08a9082
54 N58e4def61fa444ca8d6cb0e417b1e01f
55 N7f5c4972af004d58b5cff2def7eacc36
56 N906ab34c299d45c8990c62e4402de1be
57 N9ec4059724f84480a6995f8f346ce00c
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037442335
59 https://doi.org/10.1007/s00216-010-3566-2
60 schema:sdDatePublished 2019-04-11T09:57
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher Nfe290451ee674d17b8cfa1671531a556
63 schema:url http://link.springer.com/10.1007%2Fs00216-010-3566-2
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N02c5146ed53c4a55afa3c80bd083b7da rdf:first sg:person.01144441321.77
68 rdf:rest Nb4c69c244d2d4d73a0e4b7e1d9e78f4d
69 N0a047c01f87f422eabf7615cf08a9082 schema:name doi
70 schema:value 10.1007/s00216-010-3566-2
71 rdf:type schema:PropertyValue
72 N0d284a42b1914f3c9c7ac86a3d3615c3 schema:volumeNumber 397
73 rdf:type schema:PublicationVolume
74 N1ea56c6291ef4de59ebfc3861f902075 rdf:first sg:person.010221400151.42
75 rdf:rest N435c1a7e292148a3a0aa19a110c68cb3
76 N2b770817e85b461195f8296f66a31a76 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Starch
78 rdf:type schema:DefinedTerm
79 N435c1a7e292148a3a0aa19a110c68cb3 rdf:first sg:person.0754342705.30
80 rdf:rest Nb48e9f829aa24445913345e39caba220
81 N4f428883bc254ab0b5acf96f90ff7168 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Food Industry
83 rdf:type schema:DefinedTerm
84 N58e4def61fa444ca8d6cb0e417b1e01f schema:name pubmed_id
85 schema:value 20213166
86 rdf:type schema:PropertyValue
87 N697708fba02c4d3cb1964b0f02d289c8 rdf:first sg:person.01221130575.03
88 rdf:rest N1ea56c6291ef4de59ebfc3861f902075
89 N6d6614fa97474af89bfa7cc96fbb3bc1 schema:affiliation https://www.grid.ac/institutes/grid.411198.4
90 schema:familyName Alves
91 schema:givenName Rafael S.
92 rdf:type schema:Person
93 N7d968c0dbd8a46b3b2228665eb42f8ef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Spectrum Analysis, Raman
95 rdf:type schema:DefinedTerm
96 N7f5c4972af004d58b5cff2def7eacc36 schema:name dimensions_id
97 schema:value pub.1037442335
98 rdf:type schema:PropertyValue
99 N857c32ccb4394a03868fdbec51aca81c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Principal Component Analysis
101 rdf:type schema:DefinedTerm
102 N906ab34c299d45c8990c62e4402de1be schema:name readcube_id
103 schema:value b25bec7f7279844ffaf8301746670b765582b4791f1c2a1c55c954867cc2bec7
104 rdf:type schema:PropertyValue
105 N9ec4059724f84480a6995f8f346ce00c schema:name nlm_unique_id
106 schema:value 101134327
107 rdf:type schema:PropertyValue
108 Na525ab7768dd4637a90454cf306a63d9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Zea mays
110 rdf:type schema:DefinedTerm
111 Nb48e9f829aa24445913345e39caba220 rdf:first sg:person.014507101642.94
112 rdf:rest rdf:nil
113 Nb4c69c244d2d4d73a0e4b7e1d9e78f4d rdf:first N6d6614fa97474af89bfa7cc96fbb3bc1
114 rdf:rest N697708fba02c4d3cb1964b0f02d289c8
115 Nbe7ae6e12dda47ada7c646dd5936d1b4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Multivariate Analysis
117 rdf:type schema:DefinedTerm
118 Nc5d394a097fc45cc80a04c4e25ec5dff schema:issueNumber 7
119 rdf:type schema:PublicationIssue
120 Ncb0d9ec5ab2f47f7ba261bbe17352400 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Amylose
122 rdf:type schema:DefinedTerm
123 Ncf1e634024904b5f9301d18852219945 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Manihot
125 rdf:type schema:DefinedTerm
126 Ne2625d49c7e6415ebaa7475b24e5ac27 schema:name Gemacom Comércio e Serviços LTDA, 36092-050, Juiz de Fora, MG, Brazil
127 rdf:type schema:Organization
128 Ne433a1340a014815836029e2cdad6dee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Quality Control
130 rdf:type schema:DefinedTerm
131 Nfe290451ee674d17b8cfa1671531a556 schema:name Springer Nature - SN SciGraph project
132 rdf:type schema:Organization
133 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
134 schema:name Chemical Sciences
135 rdf:type schema:DefinedTerm
136 anzsrc-for:0301 schema:inDefinedTermSet anzsrc-for:
137 schema:name Analytical Chemistry
138 rdf:type schema:DefinedTerm
139 sg:journal.1357342 schema:issn 1618-2642
140 1618-2650
141 schema:name Analytical and Bioanalytical Chemistry
142 rdf:type schema:Periodical
143 sg:person.010221400151.42 schema:affiliation Ne2625d49c7e6415ebaa7475b24e5ac27
144 schema:familyName Stephani
145 schema:givenName Rodrigo
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010221400151.42
147 rdf:type schema:Person
148 sg:person.01144441321.77 schema:affiliation https://www.grid.ac/institutes/grid.411198.4
149 schema:familyName Almeida
150 schema:givenName Mariana R.
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144441321.77
152 rdf:type schema:Person
153 sg:person.01221130575.03 schema:affiliation https://www.grid.ac/institutes/grid.411087.b
154 schema:familyName Nascimbem
155 schema:givenName Laura B. L. R.
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221130575.03
157 rdf:type schema:Person
158 sg:person.014507101642.94 schema:affiliation https://www.grid.ac/institutes/grid.411198.4
159 schema:familyName de Oliveira
160 schema:givenName Luiz Fernando C.
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014507101642.94
162 rdf:type schema:Person
163 sg:person.0754342705.30 schema:affiliation https://www.grid.ac/institutes/grid.411087.b
164 schema:familyName Poppi
165 schema:givenName Ronei J.
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754342705.30
167 rdf:type schema:Person
168 https://doi.org/10.1002/jrs.2125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026904349
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1002/star.200700612 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052989819
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.aca.2004.10.055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051680620
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.aca.2005.02.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016621006
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.aca.2007.04.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001001122
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.carbpol.2008.12.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041350178
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.carres.2005.08.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025126920
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.molstruc.2005.05.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044150253
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.saa.2004.10.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043130533
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.saa.2006.11.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037812273
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/s0003-2670(99)00827-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030744780
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/s0022-2860(00)00590-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013097152
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/s0141-8130(98)00040-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019257483
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/s0144-8617(01)00304-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052146631
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/s0144-8617(03)00158-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046170580
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/s0166-1280(96)04881-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007933698
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/s0308-8146(01)00292-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053435300
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/s0924-2031(01)00107-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031246111
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1016/s0924-2031(99)00080-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008176215
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1016/s0924-2244(02)00243-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008230118
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1021/ac60214a047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055048783
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1021/jf011652p schema:sameAs https://app.dimensions.ai/details/publication/pub.1055899588
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1021/jf0510440 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055903937
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1039/b003805i schema:sameAs https://app.dimensions.ai/details/publication/pub.1030754726
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1080/00401706.1969.10490666 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058284032
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1094/cchem.2004.81.4.429 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060075639
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1139/y91-011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017936144
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1366/0003702021954881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065255832
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1590/s0100-40422008000700004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021076164
225 rdf:type schema:CreativeWork
226 https://www.grid.ac/institutes/grid.411087.b schema:alternateName State University of Campinas
227 schema:name Laboratório de Quimiometria em Química Analítica (LAQQA), Instituto de Química, UNICAMP, cx. Postal 6154, 13083-970, Campinas, SP, Brazil
228 rdf:type schema:Organization
229 https://www.grid.ac/institutes/grid.411198.4 schema:alternateName Universidade Federal de Juiz de Fora
230 schema:name Núcleo de Espectroscopia e Estrutura Molecular (NEEM), Departamento de Química, Universidade Federal de Juiz de Fora, 36036-330, Juiz de Fora, MG, Brazil
231 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...