Determination of loratadine and pseudoephedrine sulfate in pharmaceuticals based on non-linear second-order spectrophotometric data generated by a pH-gradient flow injection ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-12

AUTHORS

María J. Culzoni, Héctor C. Goicoechea

ABSTRACT

Loratadine (LOR) and pseudoephedrine sulfate (PES) were determined in pharmaceutical samples by using non-linear second-order data generated by a pH-gradient flow injection analysis (FIA) system with diode-array detection. Determination of both analytes was performed on the basis of differences between the acid-base and spectral features of each drug species. Non-linearities were detected by using both qualitative and quantitative tools. As a consequence of the non-linearity, a recently reported algorithm, artificial neural networks followed by residual bilinearization (ANN/RBL), was shown to furnish more satisfactory results. Recoveries of 99.7% (LOR) and 95.6% (PES) were obtained when analyzing a validation set containing unexpected components (the usual excipients found in pharmaceutical preparations). The average value obtained by implementation of the method on four replicates was compared with that obtained by a reference method based on HPLC (difference not significant; p > 0.05). More... »

PAGES

2217-2225

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00216-007-1656-6

DOI

http://dx.doi.org/10.1007/s00216-007-1656-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042666308

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/17955218


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Anti-Allergic Agents", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chemistry, Pharmaceutical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ephedrine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Flow Injection Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hydrogen-Ion Concentration", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Loratadine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Chemical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neural Networks (Computer)", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Spectrophotometry", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National University of the Littoral", 
          "id": "https://www.grid.ac/institutes/grid.10798.37", 
          "name": [
            "Laboratorio de Desarrollo Anal\u00edtico y Quimiometr\u00eda (LADAQ), C\u00e1tedra de Qu\u00edmica Anal\u00edtica I, Facultad de Bioqu\u00edmica y Ciencias Biol\u00f3gicas, Universidad Nacional del Litoral, Ciudad Universitaria, (S3000ZAA), Santa Fe, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Culzoni", 
        "givenName": "Mar\u00eda J.", 
        "id": "sg:person.01141147051.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141147051.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of the Littoral", 
          "id": "https://www.grid.ac/institutes/grid.10798.37", 
          "name": [
            "Laboratorio de Desarrollo Anal\u00edtico y Quimiometr\u00eda (LADAQ), C\u00e1tedra de Qu\u00edmica Anal\u00edtica I, Facultad de Bioqu\u00edmica y Ciencias Biol\u00f3gicas, Universidad Nacional del Litoral, Ciudad Universitaria, (S3000ZAA), Santa Fe, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goicoechea", 
        "givenName": "H\u00e9ctor C.", 
        "id": "sg:person.0754117262.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754117262.29"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0169-7439(97)00032-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005499634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0039-9140(99)00256-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009893466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0169-7439(95)00047-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010022624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b617171k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012754742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cem.927", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018092909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cem.927", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018092909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/a805562i", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031086180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1570-0232(03)00498-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032931797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1570-0232(03)00498-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032931797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0731-7085(03)00249-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038052049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0731-7085(03)00249-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038052049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cem.971", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044806580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemolab.2004.03.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046320798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.trac.2007.04.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048561911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jchromb.2003.08.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049511680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jchromb.2003.08.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049511680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0003-2670(98)00543-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049547948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac00014a016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054966100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac00087a718", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054971205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac00162a020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054977122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac00293a054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054991432"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-12", 
    "datePublishedReg": "2007-12-01", 
    "description": "Loratadine (LOR) and pseudoephedrine sulfate (PES) were determined in pharmaceutical samples by using non-linear second-order data generated by a pH-gradient flow injection analysis (FIA) system with diode-array detection. Determination of both analytes was performed on the basis of differences between the acid-base and spectral features of each drug species. Non-linearities were detected by using both qualitative and quantitative tools. As a consequence of the non-linearity, a recently reported algorithm, artificial neural networks followed by residual bilinearization (ANN/RBL), was shown to furnish more satisfactory results. Recoveries of 99.7% (LOR) and 95.6% (PES) were obtained when analyzing a validation set containing unexpected components (the usual excipients found in pharmaceutical preparations). The average value obtained by implementation of the method on four replicates was compared with that obtained by a reference method based on HPLC (difference not significant; p > 0.05).", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00216-007-1656-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1357342", 
        "issn": [
          "1618-2642", 
          "1618-2650"
        ], 
        "name": "Analytical and Bioanalytical Chemistry", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7-8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "389"
      }
    ], 
    "name": "Determination of loratadine and pseudoephedrine sulfate in pharmaceuticals based on non-linear second-order spectrophotometric data generated by a pH-gradient flow injection technique and artificial neural networks", 
    "pagination": "2217-2225", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cb3cd917b6985f95e94a9621f8f3c79b7b71cb5c08c01b9719dad5c8bfa3d564"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "17955218"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101134327"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00216-007-1656-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042666308"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00216-007-1656-6", 
      "https://app.dimensions.ai/details/publication/pub.1042666308"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13093_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00216-007-1656-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00216-007-1656-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00216-007-1656-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00216-007-1656-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00216-007-1656-6'


 

This table displays all metadata directly associated to this object as RDF triples.

167 TRIPLES      21 PREDICATES      56 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00216-007-1656-6 schema:about N02dd78caebe64a79991b7c6e128cf425
2 N1390494273ba4d64ab2c636fef812c48
3 N2ecf9db27e504656ac82bdd1013a4d52
4 N2ed7d7e408ec4e588edf4427109655b0
5 N4b8773c5ca9b40989274fcfca1757032
6 N4dbb7bebb3ca4b2c83c332b50536ac42
7 N649e5c807fc84c029f6004a6dcf4396e
8 N8bd921ca048e492991fcc1bdc4b4436d
9 Nc8626ef4a1de4d048a8506f258e3be07
10 Ncbd4e982595d4383b14d15d2e925fdd8
11 anzsrc-for:08
12 anzsrc-for:0801
13 schema:author N54989c3feaa941ac9014c133466721bc
14 schema:citation https://doi.org/10.1002/cem.927
15 https://doi.org/10.1002/cem.971
16 https://doi.org/10.1016/0169-7439(95)00047-x
17 https://doi.org/10.1016/j.chemolab.2004.03.004
18 https://doi.org/10.1016/j.jchromb.2003.08.026
19 https://doi.org/10.1016/j.trac.2007.04.006
20 https://doi.org/10.1016/s0003-2670(98)00543-1
21 https://doi.org/10.1016/s0039-9140(99)00256-8
22 https://doi.org/10.1016/s0169-7439(97)00032-4
23 https://doi.org/10.1016/s0731-7085(03)00249-8
24 https://doi.org/10.1016/s1570-0232(03)00498-7
25 https://doi.org/10.1021/ac00014a016
26 https://doi.org/10.1021/ac00087a718
27 https://doi.org/10.1021/ac00162a020
28 https://doi.org/10.1021/ac00293a054
29 https://doi.org/10.1039/a805562i
30 https://doi.org/10.1039/b617171k
31 schema:datePublished 2007-12
32 schema:datePublishedReg 2007-12-01
33 schema:description Loratadine (LOR) and pseudoephedrine sulfate (PES) were determined in pharmaceutical samples by using non-linear second-order data generated by a pH-gradient flow injection analysis (FIA) system with diode-array detection. Determination of both analytes was performed on the basis of differences between the acid-base and spectral features of each drug species. Non-linearities were detected by using both qualitative and quantitative tools. As a consequence of the non-linearity, a recently reported algorithm, artificial neural networks followed by residual bilinearization (ANN/RBL), was shown to furnish more satisfactory results. Recoveries of 99.7% (LOR) and 95.6% (PES) were obtained when analyzing a validation set containing unexpected components (the usual excipients found in pharmaceutical preparations). The average value obtained by implementation of the method on four replicates was compared with that obtained by a reference method based on HPLC (difference not significant; p > 0.05).
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree false
37 schema:isPartOf Na14b1e3c0a85462b96d514075b3ddeb1
38 Nb68041c3fde34e0786ee1933492c25ed
39 sg:journal.1357342
40 schema:name Determination of loratadine and pseudoephedrine sulfate in pharmaceuticals based on non-linear second-order spectrophotometric data generated by a pH-gradient flow injection technique and artificial neural networks
41 schema:pagination 2217-2225
42 schema:productId N2d5b793b56094187bbe9eb969b67ded3
43 Nbdc2d1e6c4a74ab8b1ef3d7f46efaaa3
44 Ncf38254a33a74acea3ba4fe9fa3604b8
45 Nd033f0e194b04fafa2245a3be25c013c
46 Ne860bc28408e46658670d724456aae20
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042666308
48 https://doi.org/10.1007/s00216-007-1656-6
49 schema:sdDatePublished 2019-04-11T14:31
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher N54cccca14bd544f497f401dfcbf7c9e7
52 schema:url http://link.springer.com/10.1007%2Fs00216-007-1656-6
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N02dd78caebe64a79991b7c6e128cf425 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
57 schema:name Spectrophotometry
58 rdf:type schema:DefinedTerm
59 N1390494273ba4d64ab2c636fef812c48 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
60 schema:name Hydrogen-Ion Concentration
61 rdf:type schema:DefinedTerm
62 N2d5b793b56094187bbe9eb969b67ded3 schema:name readcube_id
63 schema:value cb3cd917b6985f95e94a9621f8f3c79b7b71cb5c08c01b9719dad5c8bfa3d564
64 rdf:type schema:PropertyValue
65 N2ecf9db27e504656ac82bdd1013a4d52 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
66 schema:name Neural Networks (Computer)
67 rdf:type schema:DefinedTerm
68 N2ed7d7e408ec4e588edf4427109655b0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Loratadine
70 rdf:type schema:DefinedTerm
71 N4b8773c5ca9b40989274fcfca1757032 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Chemistry, Pharmaceutical
73 rdf:type schema:DefinedTerm
74 N4dbb7bebb3ca4b2c83c332b50536ac42 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Anti-Allergic Agents
76 rdf:type schema:DefinedTerm
77 N54989c3feaa941ac9014c133466721bc rdf:first sg:person.01141147051.18
78 rdf:rest N8b482fdf28144490860b1bb8f23c5d7c
79 N54cccca14bd544f497f401dfcbf7c9e7 schema:name Springer Nature - SN SciGraph project
80 rdf:type schema:Organization
81 N649e5c807fc84c029f6004a6dcf4396e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Algorithms
83 rdf:type schema:DefinedTerm
84 N8b482fdf28144490860b1bb8f23c5d7c rdf:first sg:person.0754117262.29
85 rdf:rest rdf:nil
86 N8bd921ca048e492991fcc1bdc4b4436d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Models, Chemical
88 rdf:type schema:DefinedTerm
89 Na14b1e3c0a85462b96d514075b3ddeb1 schema:issueNumber 7-8
90 rdf:type schema:PublicationIssue
91 Nb68041c3fde34e0786ee1933492c25ed schema:volumeNumber 389
92 rdf:type schema:PublicationVolume
93 Nbdc2d1e6c4a74ab8b1ef3d7f46efaaa3 schema:name dimensions_id
94 schema:value pub.1042666308
95 rdf:type schema:PropertyValue
96 Nc8626ef4a1de4d048a8506f258e3be07 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Flow Injection Analysis
98 rdf:type schema:DefinedTerm
99 Ncbd4e982595d4383b14d15d2e925fdd8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Ephedrine
101 rdf:type schema:DefinedTerm
102 Ncf38254a33a74acea3ba4fe9fa3604b8 schema:name pubmed_id
103 schema:value 17955218
104 rdf:type schema:PropertyValue
105 Nd033f0e194b04fafa2245a3be25c013c schema:name nlm_unique_id
106 schema:value 101134327
107 rdf:type schema:PropertyValue
108 Ne860bc28408e46658670d724456aae20 schema:name doi
109 schema:value 10.1007/s00216-007-1656-6
110 rdf:type schema:PropertyValue
111 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
112 schema:name Information and Computing Sciences
113 rdf:type schema:DefinedTerm
114 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
115 schema:name Artificial Intelligence and Image Processing
116 rdf:type schema:DefinedTerm
117 sg:journal.1357342 schema:issn 1618-2642
118 1618-2650
119 schema:name Analytical and Bioanalytical Chemistry
120 rdf:type schema:Periodical
121 sg:person.01141147051.18 schema:affiliation https://www.grid.ac/institutes/grid.10798.37
122 schema:familyName Culzoni
123 schema:givenName María J.
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141147051.18
125 rdf:type schema:Person
126 sg:person.0754117262.29 schema:affiliation https://www.grid.ac/institutes/grid.10798.37
127 schema:familyName Goicoechea
128 schema:givenName Héctor C.
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754117262.29
130 rdf:type schema:Person
131 https://doi.org/10.1002/cem.927 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018092909
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1002/cem.971 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044806580
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/0169-7439(95)00047-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1010022624
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.chemolab.2004.03.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046320798
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.jchromb.2003.08.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049511680
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.trac.2007.04.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048561911
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/s0003-2670(98)00543-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049547948
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/s0039-9140(99)00256-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009893466
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/s0169-7439(97)00032-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005499634
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/s0731-7085(03)00249-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038052049
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/s1570-0232(03)00498-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032931797
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1021/ac00014a016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054966100
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1021/ac00087a718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054971205
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1021/ac00162a020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054977122
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1021/ac00293a054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054991432
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1039/a805562i schema:sameAs https://app.dimensions.ai/details/publication/pub.1031086180
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1039/b617171k schema:sameAs https://app.dimensions.ai/details/publication/pub.1012754742
164 rdf:type schema:CreativeWork
165 https://www.grid.ac/institutes/grid.10798.37 schema:alternateName National University of the Littoral
166 schema:name Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, (S3000ZAA), Santa Fe, Argentina
167 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...