In-situ FTIR investigations on the reduction of vinylene electrolyte additives suitable for use in lithium-ion batteries View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2004-05

AUTHORS

H. J. Santner, C. Korepp, M. Winter, J. O. Besenhard, K.-C. Möller

ABSTRACT

Lithium-ion batteries operate beyond the thermodynamic stability of the aprotic organic electrolyte used and electrolyte decomposition occurs at both electrodes. The electrolyte must therefore be composed in a way that its decomposition products form a film on the electrodes which stops the decomposition reactions but is still permeable to the Li(+) cations which are the charge carriers. At the graphite anode, this film is commonly referred to as a solid electrolyte interphase (SEI). Aprotic organic compounds containing vinylene groups can form an effective SEI on a graphitic anode. As examples, vinyl acetate (VA) and acrylonitrile (AN) have been investigated by in-situ Fourier transform infrared (FTIR) spectroscopy in a specially developed IR cell. The measurements focus on electrolyte decomposition and the mechanism of SEI formation in the presence of VA and AN. We conclude that cathodic reduction of the vinylene groups (i.e., via reduction of the double bond) in the electrolyte additives is the initiating and thus a most important step of the SEI-formation process, even in an electrolyte which contains only a few percent (i.e. electrolyte additive amounts) of the compound. The possibility of electropolymerization of the vinylene monomers in the battery electrolytes used is critically discussed on the basis of the IR data obtained. More... »

PAGES

266-271

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00216-004-2522-4

DOI

http://dx.doi.org/10.1007/s00216-004-2522-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028242544

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/14968287


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Graz University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.410413.3", 
          "name": [
            "Institute for Chemical Technology for Inorganic Materials, Graz University of Technology, 8010, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Santner", 
        "givenName": "H. J.", 
        "id": "sg:person.010526411143.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010526411143.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Graz University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.410413.3", 
          "name": [
            "Institute for Chemical Technology for Inorganic Materials, Graz University of Technology, 8010, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Korepp", 
        "givenName": "C.", 
        "id": "sg:person.01027674616.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027674616.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Graz University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.410413.3", 
          "name": [
            "Institute for Chemical Technology for Inorganic Materials, Graz University of Technology, 8010, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Winter", 
        "givenName": "M.", 
        "id": "sg:person.01044357630.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044357630.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Graz University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.410413.3", 
          "name": [
            "Institute for Chemical Technology for Inorganic Materials, Graz University of Technology, 8010, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Besenhard", 
        "givenName": "J. O.", 
        "id": "sg:person.01144123216.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144123216.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Graz University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.410413.3", 
          "name": [
            "Institute for Chemical Technology for Inorganic Materials, Graz University of Technology, 8010, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "M\u00f6ller", 
        "givenName": "K.-C.", 
        "id": "sg:person.013377226313.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013377226313.06"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0378-7753(94)02073-c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002146290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-0728(91)85370-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004469514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0008-6223(76)90119-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019213073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0008-6223(76)90119-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019213073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0013-4686(01)00858-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030072509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.2411199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034401217"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-05", 
    "datePublishedReg": "2004-05-01", 
    "description": "Lithium-ion batteries operate beyond the thermodynamic stability of the aprotic organic electrolyte used and electrolyte decomposition occurs at both electrodes. The electrolyte must therefore be composed in a way that its decomposition products form a film on the electrodes which stops the decomposition reactions but is still permeable to the Li(+) cations which are the charge carriers. At the graphite anode, this film is commonly referred to as a solid electrolyte interphase (SEI). Aprotic organic compounds containing vinylene groups can form an effective SEI on a graphitic anode. As examples, vinyl acetate (VA) and acrylonitrile (AN) have been investigated by in-situ Fourier transform infrared (FTIR) spectroscopy in a specially developed IR cell. The measurements focus on electrolyte decomposition and the mechanism of SEI formation in the presence of VA and AN. We conclude that cathodic reduction of the vinylene groups (i.e., via reduction of the double bond) in the electrolyte additives is the initiating and thus a most important step of the SEI-formation process, even in an electrolyte which contains only a few percent (i.e. electrolyte additive amounts) of the compound. The possibility of electropolymerization of the vinylene monomers in the battery electrolytes used is critically discussed on the basis of the IR data obtained.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00216-004-2522-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1357342", 
        "issn": [
          "1618-2642", 
          "1618-2650"
        ], 
        "name": "Analytical and Bioanalytical Chemistry", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "379"
      }
    ], 
    "name": "In-situ FTIR investigations on the reduction of vinylene electrolyte additives suitable for use in lithium-ion batteries", 
    "pagination": "266-271", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "868abdfb799cd8dd33bbdfc499524b868d60c486da7cf96b72c555385a59f5c3"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "14968287"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101134327"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00216-004-2522-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028242544"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00216-004-2522-4", 
      "https://app.dimensions.ai/details/publication/pub.1028242544"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000513.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00216-004-2522-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00216-004-2522-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00216-004-2522-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00216-004-2522-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00216-004-2522-4'


 

This table displays all metadata directly associated to this object as RDF triples.

112 TRIPLES      21 PREDICATES      34 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00216-004-2522-4 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Nf368f7eaf24842a3a763f7d579de84c6
4 schema:citation https://doi.org/10.1016/0008-6223(76)90119-6
5 https://doi.org/10.1016/0022-0728(91)85370-5
6 https://doi.org/10.1016/0378-7753(94)02073-c
7 https://doi.org/10.1016/s0013-4686(01)00858-1
8 https://doi.org/10.1149/1.2411199
9 schema:datePublished 2004-05
10 schema:datePublishedReg 2004-05-01
11 schema:description Lithium-ion batteries operate beyond the thermodynamic stability of the aprotic organic electrolyte used and electrolyte decomposition occurs at both electrodes. The electrolyte must therefore be composed in a way that its decomposition products form a film on the electrodes which stops the decomposition reactions but is still permeable to the Li(+) cations which are the charge carriers. At the graphite anode, this film is commonly referred to as a solid electrolyte interphase (SEI). Aprotic organic compounds containing vinylene groups can form an effective SEI on a graphitic anode. As examples, vinyl acetate (VA) and acrylonitrile (AN) have been investigated by in-situ Fourier transform infrared (FTIR) spectroscopy in a specially developed IR cell. The measurements focus on electrolyte decomposition and the mechanism of SEI formation in the presence of VA and AN. We conclude that cathodic reduction of the vinylene groups (i.e., via reduction of the double bond) in the electrolyte additives is the initiating and thus a most important step of the SEI-formation process, even in an electrolyte which contains only a few percent (i.e. electrolyte additive amounts) of the compound. The possibility of electropolymerization of the vinylene monomers in the battery electrolytes used is critically discussed on the basis of the IR data obtained.
12 schema:genre research_article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N50c3f943040641c190eb09f8edca8890
16 Ne367adcfd9c94849822f119dde963201
17 sg:journal.1357342
18 schema:name In-situ FTIR investigations on the reduction of vinylene electrolyte additives suitable for use in lithium-ion batteries
19 schema:pagination 266-271
20 schema:productId N023646b795e24509b24260a8da192ea6
21 N41caf1afc3434e708014d3e2c1f3acbb
22 N59288c39c0874a92abd619da242fced2
23 N664c7ae555904748b95577f8182f3ef7
24 Naa9b39766eef496bb85b5631f3fea837
25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028242544
26 https://doi.org/10.1007/s00216-004-2522-4
27 schema:sdDatePublished 2019-04-10T14:10
28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
29 schema:sdPublisher N49006602e6164672a0271f7c8b69d0d2
30 schema:url http://link.springer.com/10.1007%2Fs00216-004-2522-4
31 sgo:license sg:explorer/license/
32 sgo:sdDataset articles
33 rdf:type schema:ScholarlyArticle
34 N023646b795e24509b24260a8da192ea6 schema:name pubmed_id
35 schema:value 14968287
36 rdf:type schema:PropertyValue
37 N41caf1afc3434e708014d3e2c1f3acbb schema:name nlm_unique_id
38 schema:value 101134327
39 rdf:type schema:PropertyValue
40 N49006602e6164672a0271f7c8b69d0d2 schema:name Springer Nature - SN SciGraph project
41 rdf:type schema:Organization
42 N50c3f943040641c190eb09f8edca8890 schema:volumeNumber 379
43 rdf:type schema:PublicationVolume
44 N59288c39c0874a92abd619da242fced2 schema:name readcube_id
45 schema:value 868abdfb799cd8dd33bbdfc499524b868d60c486da7cf96b72c555385a59f5c3
46 rdf:type schema:PropertyValue
47 N5f3abc196c184eb1b432593c45c4e948 rdf:first sg:person.01144123216.14
48 rdf:rest Ne0ec3e9f5686477aa276cba41bedbe3e
49 N664c7ae555904748b95577f8182f3ef7 schema:name dimensions_id
50 schema:value pub.1028242544
51 rdf:type schema:PropertyValue
52 N98cb58f2780442f3b8cac87b8658e2aa rdf:first sg:person.01044357630.19
53 rdf:rest N5f3abc196c184eb1b432593c45c4e948
54 Naa9b39766eef496bb85b5631f3fea837 schema:name doi
55 schema:value 10.1007/s00216-004-2522-4
56 rdf:type schema:PropertyValue
57 Nb1c1eee44b39430c8fb301d471381eeb rdf:first sg:person.01027674616.11
58 rdf:rest N98cb58f2780442f3b8cac87b8658e2aa
59 Ne0ec3e9f5686477aa276cba41bedbe3e rdf:first sg:person.013377226313.06
60 rdf:rest rdf:nil
61 Ne367adcfd9c94849822f119dde963201 schema:issueNumber 2
62 rdf:type schema:PublicationIssue
63 Nf368f7eaf24842a3a763f7d579de84c6 rdf:first sg:person.010526411143.67
64 rdf:rest Nb1c1eee44b39430c8fb301d471381eeb
65 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
66 schema:name Chemical Sciences
67 rdf:type schema:DefinedTerm
68 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
69 schema:name Physical Chemistry (incl. Structural)
70 rdf:type schema:DefinedTerm
71 sg:journal.1357342 schema:issn 1618-2642
72 1618-2650
73 schema:name Analytical and Bioanalytical Chemistry
74 rdf:type schema:Periodical
75 sg:person.01027674616.11 schema:affiliation https://www.grid.ac/institutes/grid.410413.3
76 schema:familyName Korepp
77 schema:givenName C.
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027674616.11
79 rdf:type schema:Person
80 sg:person.01044357630.19 schema:affiliation https://www.grid.ac/institutes/grid.410413.3
81 schema:familyName Winter
82 schema:givenName M.
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044357630.19
84 rdf:type schema:Person
85 sg:person.010526411143.67 schema:affiliation https://www.grid.ac/institutes/grid.410413.3
86 schema:familyName Santner
87 schema:givenName H. J.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010526411143.67
89 rdf:type schema:Person
90 sg:person.01144123216.14 schema:affiliation https://www.grid.ac/institutes/grid.410413.3
91 schema:familyName Besenhard
92 schema:givenName J. O.
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144123216.14
94 rdf:type schema:Person
95 sg:person.013377226313.06 schema:affiliation https://www.grid.ac/institutes/grid.410413.3
96 schema:familyName Möller
97 schema:givenName K.-C.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013377226313.06
99 rdf:type schema:Person
100 https://doi.org/10.1016/0008-6223(76)90119-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019213073
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/0022-0728(91)85370-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004469514
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/0378-7753(94)02073-c schema:sameAs https://app.dimensions.ai/details/publication/pub.1002146290
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/s0013-4686(01)00858-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030072509
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1149/1.2411199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034401217
109 rdf:type schema:CreativeWork
110 https://www.grid.ac/institutes/grid.410413.3 schema:alternateName Graz University of Technology
111 schema:name Institute for Chemical Technology for Inorganic Materials, Graz University of Technology, 8010, Graz, Austria
112 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...