Sustained modelling ability of artificial neural networks in the analysis of two pharmaceuticals (dextropropoxyphene and dipyrone) present in unequal concentrations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003-07

AUTHORS

María S. Cámara, Félix M. Ferroni, Mercedes De Zan, Héctor C. Goicoechea

ABSTRACT

An improvement is presented on the simultaneous determination of two active ingredients present in unequal concentrations in injections. The analysis was carried out with spectrophotometric data and non-linear multivariate calibration methods, in particular artificial neural networks (ANNs). The presence of non-linearities caused by the major analyte concentrations which deviate from Beer's law was confirmed by plotting actual vs. predicted concentrations, and observing curvatures in the residuals for the estimated concentrations with linear methods. Mixtures of dextropropoxyphene and dipyrone have been analysed by using linear and non-linear partial least-squares (PLS and NPLSs) and ANNs. Notwithstanding the high degree of spectral overlap and the occurrence of non-linearities, rapid and simultaneous analysis has been achieved, with reasonably good accuracy and precision. A commercial sample was analysed by using the present methodology, and the obtained results show reasonably good agreement with those obtained by using high-performance liquid chromatography (HPLC) and a UV-spectrophotometric comparative methods. More... »

PAGES

838-843

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00216-003-1977-z

DOI

http://dx.doi.org/10.1007/s00216-003-1977-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027430463

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/12802564


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Anti-Inflammatory Agents, Non-Steroidal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Antitussive Agents", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Dextropropoxyphene", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Dipyrone", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electrochemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Structure", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neural Networks (Computer)", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nonlinear Dynamics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pharmaceutical Preparations", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National University of the Littoral", 
          "id": "https://www.grid.ac/institutes/grid.10798.37", 
          "name": [
            "Laboratorio de Control de Calidad de Medicamentos, C\u00e1tedra de Qu\u00edmica Anal\u00edtica I, Facultad de Bioqu\u00edmica y Ciencias Biol\u00f3gicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "C\u00e1mara", 
        "givenName": "Mar\u00eda S.", 
        "id": "sg:person.01073234415.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01073234415.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of the Littoral", 
          "id": "https://www.grid.ac/institutes/grid.10798.37", 
          "name": [
            "Laboratorio de Control de Calidad de Medicamentos, C\u00e1tedra de Qu\u00edmica Anal\u00edtica I, Facultad de Bioqu\u00edmica y Ciencias Biol\u00f3gicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ferroni", 
        "givenName": "F\u00e9lix M.", 
        "id": "sg:person.01132572535.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132572535.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of the Littoral", 
          "id": "https://www.grid.ac/institutes/grid.10798.37", 
          "name": [
            "Laboratorio de Control de Calidad de Medicamentos, C\u00e1tedra de Qu\u00edmica Anal\u00edtica I, Facultad de Bioqu\u00edmica y Ciencias Biol\u00f3gicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "De Zan", 
        "givenName": "Mercedes", 
        "id": "sg:person.016461564614.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016461564614.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of the Littoral", 
          "id": "https://www.grid.ac/institutes/grid.10798.37", 
          "name": [
            "Laboratorio de Control de Calidad de Medicamentos, C\u00e1tedra de Qu\u00edmica Anal\u00edtica I, Facultad de Bioqu\u00edmica y Ciencias Biol\u00f3gicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goicoechea", 
        "givenName": "H\u00e9ctor C.", 
        "id": "sg:person.0754117262.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754117262.29"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00216-002-1435-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000200853", 
          "https://doi.org/10.1007/s00216-002-1435-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-017-1026-8_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000847385", 
          "https://doi.org/10.1007/978-94-017-1026-8_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0003-2670(96)00250-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008073233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0039-9140(98)00233-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009038866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-7439(99)00048-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023231688"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/a805562i", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031086180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0039-9140(00)00443-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032478593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0039-9140(97)00184-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034919078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0006203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041548759", 
          "https://doi.org/10.1007/bfb0006203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0165-9936(00)00045-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042280346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b005395n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043669126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0003-2670(00)01012-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047131648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0003-2670(98)00543-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049547948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac00020a022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054966491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078781778", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003-07", 
    "datePublishedReg": "2003-07-01", 
    "description": "An improvement is presented on the simultaneous determination of two active ingredients present in unequal concentrations in injections. The analysis was carried out with spectrophotometric data and non-linear multivariate calibration methods, in particular artificial neural networks (ANNs). The presence of non-linearities caused by the major analyte concentrations which deviate from Beer's law was confirmed by plotting actual vs. predicted concentrations, and observing curvatures in the residuals for the estimated concentrations with linear methods. Mixtures of dextropropoxyphene and dipyrone have been analysed by using linear and non-linear partial least-squares (PLS and NPLSs) and ANNs. Notwithstanding the high degree of spectral overlap and the occurrence of non-linearities, rapid and simultaneous analysis has been achieved, with reasonably good accuracy and precision. A commercial sample was analysed by using the present methodology, and the obtained results show reasonably good agreement with those obtained by using high-performance liquid chromatography (HPLC) and a UV-spectrophotometric comparative methods.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00216-003-1977-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1357342", 
        "issn": [
          "1618-2642", 
          "1618-2650"
        ], 
        "name": "Analytical and Bioanalytical Chemistry", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "376"
      }
    ], 
    "name": "Sustained modelling ability of artificial neural networks in the analysis of two pharmaceuticals (dextropropoxyphene and dipyrone) present in unequal concentrations", 
    "pagination": "838-843", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "82ab560a11c99c1151453f7b5fae4b3abe9b45a2baff4b262fc20d0391efa682"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "12802564"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101134327"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00216-003-1977-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027430463"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00216-003-1977-z", 
      "https://app.dimensions.ai/details/publication/pub.1027430463"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000513.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00216-003-1977-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00216-003-1977-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00216-003-1977-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00216-003-1977-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00216-003-1977-z'


 

This table displays all metadata directly associated to this object as RDF triples.

177 TRIPLES      21 PREDICATES      54 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00216-003-1977-z schema:about N02b115a36f7b4f4b876aa02ad3ed8df9
2 N6d03c31c834e40c79b8a2c0ed31876ee
3 N818c9aa273a84782a44411ca5d07dd84
4 N9e9f0a2c62894a24ad1b8b7a614d5a7e
5 Naca482cda4fa4747b2836c7335c06f54
6 Nb910771b0d6842298c79601977e51eeb
7 Nc179103d391b4718828940c1631d6d3f
8 Nc4dfb508e1df4d57816343c450fec4c3
9 Nc5f472d9be164f4dae109be70309b102
10 Ndd328b5e86664e51ade146903d769f99
11 anzsrc-for:08
12 anzsrc-for:0801
13 schema:author Nea406ae718ee4687a4db1e8b32ad7e42
14 schema:citation sg:pub.10.1007/978-94-017-1026-8_5
15 sg:pub.10.1007/bfb0006203
16 sg:pub.10.1007/s00216-002-1435-3
17 https://app.dimensions.ai/details/publication/pub.1078781778
18 https://doi.org/10.1016/0003-2670(96)00250-4
19 https://doi.org/10.1016/s0003-2670(00)01012-6
20 https://doi.org/10.1016/s0003-2670(98)00543-1
21 https://doi.org/10.1016/s0039-9140(00)00443-4
22 https://doi.org/10.1016/s0039-9140(97)00184-7
23 https://doi.org/10.1016/s0039-9140(98)00233-1
24 https://doi.org/10.1016/s0165-9936(00)00045-5
25 https://doi.org/10.1016/s0169-7439(99)00048-9
26 https://doi.org/10.1021/ac00020a022
27 https://doi.org/10.1039/a805562i
28 https://doi.org/10.1039/b005395n
29 schema:datePublished 2003-07
30 schema:datePublishedReg 2003-07-01
31 schema:description An improvement is presented on the simultaneous determination of two active ingredients present in unequal concentrations in injections. The analysis was carried out with spectrophotometric data and non-linear multivariate calibration methods, in particular artificial neural networks (ANNs). The presence of non-linearities caused by the major analyte concentrations which deviate from Beer's law was confirmed by plotting actual vs. predicted concentrations, and observing curvatures in the residuals for the estimated concentrations with linear methods. Mixtures of dextropropoxyphene and dipyrone have been analysed by using linear and non-linear partial least-squares (PLS and NPLSs) and ANNs. Notwithstanding the high degree of spectral overlap and the occurrence of non-linearities, rapid and simultaneous analysis has been achieved, with reasonably good accuracy and precision. A commercial sample was analysed by using the present methodology, and the obtained results show reasonably good agreement with those obtained by using high-performance liquid chromatography (HPLC) and a UV-spectrophotometric comparative methods.
32 schema:genre research_article
33 schema:inLanguage en
34 schema:isAccessibleForFree false
35 schema:isPartOf N0b9024a0c59c45adb972471071c2cb4d
36 N325be43bb1a24d12a20968a0f827e1e2
37 sg:journal.1357342
38 schema:name Sustained modelling ability of artificial neural networks in the analysis of two pharmaceuticals (dextropropoxyphene and dipyrone) present in unequal concentrations
39 schema:pagination 838-843
40 schema:productId N234787ae55074332a181e113ba117171
41 N2de2ca6ea49c4c159622b20c7ea8ffbb
42 Na414714b9ab64dda8deb93b64eb8368b
43 Nc79018121e38494099fd209e2d6bd680
44 Nf0eb5ada90ff4ce3a1690f29a70a30af
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027430463
46 https://doi.org/10.1007/s00216-003-1977-z
47 schema:sdDatePublished 2019-04-10T22:32
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher Nf7e55f48591445cc84367dc5dc747229
50 schema:url http://link.springer.com/10.1007%2Fs00216-003-1977-z
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N02b115a36f7b4f4b876aa02ad3ed8df9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
55 schema:name Anti-Inflammatory Agents, Non-Steroidal
56 rdf:type schema:DefinedTerm
57 N0b9024a0c59c45adb972471071c2cb4d schema:volumeNumber 376
58 rdf:type schema:PublicationVolume
59 N234787ae55074332a181e113ba117171 schema:name doi
60 schema:value 10.1007/s00216-003-1977-z
61 rdf:type schema:PropertyValue
62 N2de2ca6ea49c4c159622b20c7ea8ffbb schema:name nlm_unique_id
63 schema:value 101134327
64 rdf:type schema:PropertyValue
65 N325be43bb1a24d12a20968a0f827e1e2 schema:issueNumber 6
66 rdf:type schema:PublicationIssue
67 N430113d3b4de473d89bad5a9610eca65 rdf:first sg:person.0754117262.29
68 rdf:rest rdf:nil
69 N452f31faec11481ea5dfdbc3ac42278d rdf:first sg:person.016461564614.34
70 rdf:rest N430113d3b4de473d89bad5a9610eca65
71 N6d03c31c834e40c79b8a2c0ed31876ee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Pharmaceutical Preparations
73 rdf:type schema:DefinedTerm
74 N818c9aa273a84782a44411ca5d07dd84 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Electrochemistry
76 rdf:type schema:DefinedTerm
77 N9e9f0a2c62894a24ad1b8b7a614d5a7e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Dipyrone
79 rdf:type schema:DefinedTerm
80 Na121652740004da69099dd3d6806bab6 rdf:first sg:person.01132572535.14
81 rdf:rest N452f31faec11481ea5dfdbc3ac42278d
82 Na414714b9ab64dda8deb93b64eb8368b schema:name dimensions_id
83 schema:value pub.1027430463
84 rdf:type schema:PropertyValue
85 Naca482cda4fa4747b2836c7335c06f54 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Molecular Structure
87 rdf:type schema:DefinedTerm
88 Nb910771b0d6842298c79601977e51eeb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Antitussive Agents
90 rdf:type schema:DefinedTerm
91 Nc179103d391b4718828940c1631d6d3f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Neural Networks (Computer)
93 rdf:type schema:DefinedTerm
94 Nc4dfb508e1df4d57816343c450fec4c3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Computer Simulation
96 rdf:type schema:DefinedTerm
97 Nc5f472d9be164f4dae109be70309b102 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Dextropropoxyphene
99 rdf:type schema:DefinedTerm
100 Nc79018121e38494099fd209e2d6bd680 schema:name readcube_id
101 schema:value 82ab560a11c99c1151453f7b5fae4b3abe9b45a2baff4b262fc20d0391efa682
102 rdf:type schema:PropertyValue
103 Ndd328b5e86664e51ade146903d769f99 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Nonlinear Dynamics
105 rdf:type schema:DefinedTerm
106 Nea406ae718ee4687a4db1e8b32ad7e42 rdf:first sg:person.01073234415.87
107 rdf:rest Na121652740004da69099dd3d6806bab6
108 Nf0eb5ada90ff4ce3a1690f29a70a30af schema:name pubmed_id
109 schema:value 12802564
110 rdf:type schema:PropertyValue
111 Nf7e55f48591445cc84367dc5dc747229 schema:name Springer Nature - SN SciGraph project
112 rdf:type schema:Organization
113 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
114 schema:name Information and Computing Sciences
115 rdf:type schema:DefinedTerm
116 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
117 schema:name Artificial Intelligence and Image Processing
118 rdf:type schema:DefinedTerm
119 sg:journal.1357342 schema:issn 1618-2642
120 1618-2650
121 schema:name Analytical and Bioanalytical Chemistry
122 rdf:type schema:Periodical
123 sg:person.01073234415.87 schema:affiliation https://www.grid.ac/institutes/grid.10798.37
124 schema:familyName Cámara
125 schema:givenName María S.
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01073234415.87
127 rdf:type schema:Person
128 sg:person.01132572535.14 schema:affiliation https://www.grid.ac/institutes/grid.10798.37
129 schema:familyName Ferroni
130 schema:givenName Félix M.
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132572535.14
132 rdf:type schema:Person
133 sg:person.016461564614.34 schema:affiliation https://www.grid.ac/institutes/grid.10798.37
134 schema:familyName De Zan
135 schema:givenName Mercedes
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016461564614.34
137 rdf:type schema:Person
138 sg:person.0754117262.29 schema:affiliation https://www.grid.ac/institutes/grid.10798.37
139 schema:familyName Goicoechea
140 schema:givenName Héctor C.
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754117262.29
142 rdf:type schema:Person
143 sg:pub.10.1007/978-94-017-1026-8_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000847385
144 https://doi.org/10.1007/978-94-017-1026-8_5
145 rdf:type schema:CreativeWork
146 sg:pub.10.1007/bfb0006203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041548759
147 https://doi.org/10.1007/bfb0006203
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/s00216-002-1435-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000200853
150 https://doi.org/10.1007/s00216-002-1435-3
151 rdf:type schema:CreativeWork
152 https://app.dimensions.ai/details/publication/pub.1078781778 schema:CreativeWork
153 https://doi.org/10.1016/0003-2670(96)00250-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008073233
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/s0003-2670(00)01012-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047131648
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/s0003-2670(98)00543-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049547948
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/s0039-9140(00)00443-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032478593
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/s0039-9140(97)00184-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034919078
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/s0039-9140(98)00233-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009038866
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/s0165-9936(00)00045-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042280346
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/s0169-7439(99)00048-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023231688
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1021/ac00020a022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054966491
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1039/a805562i schema:sameAs https://app.dimensions.ai/details/publication/pub.1031086180
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1039/b005395n schema:sameAs https://app.dimensions.ai/details/publication/pub.1043669126
174 rdf:type schema:CreativeWork
175 https://www.grid.ac/institutes/grid.10798.37 schema:alternateName National University of the Littoral
176 schema:name Laboratorio de Control de Calidad de Medicamentos, Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina
177 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...