Spectrophotometric determination of sorbic and benzoic acids in fruit juices by a net analyte signal-based method with selection of the ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003-05

AUTHORS

Nilda R. Marsili, María S. Sobrero, Héctor C. Goicoechea

ABSTRACT

Sorbic (SOR) and benzoic (BEN) acids were determined in fruit juice samples by using a net analyte signal-based methodology named HLA/GO (an hybrid linear analysis presented by Goicoechea and Olivieri) applied to spectroscopic signals. The calibration set was built with several fruit juices in order to take into account the natural variability and concentrations of both analytes covering the range usually present in commercial samples. Relative errors of prediction (REP %) of 3.6 and 5.2% were calculated for SOR and BEN respectively. Several figures of merit were calculated-sensitivity, selectivity, analytical sensitivity, and limit of detection. The method is quantitative, with reasonably good recoveries and excellent precision (less than 1%). Wavelength selection was applied, based on the concept of net analyte signal regression, and it allowed us to improve the method performance in samples containing non-modelled interferences, e.g. fruit juices different to those used to build the calibration model. More... »

PAGES

126-133

References to SciGraph publications

  • 1984. Multivariate Calibration in CHEMOMETRICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00216-003-1835-z

    DOI

    http://dx.doi.org/10.1007/s00216-003-1835-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1001052779

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/12677347


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0301", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Analytical Chemistry", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Benzoates", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Beverages", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Food Analysis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Fruit", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Reference Values", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Reproducibility of Results", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sensitivity and Specificity", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sorbic Acid", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Spectrophotometry, Atomic", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "National University of the Littoral", 
              "id": "https://www.grid.ac/institutes/grid.10798.37", 
              "name": [
                "C\u00e1tedras de Qu\u00edmica General y Anal\u00edtica I y II, Facultad de Bioqu\u00edmica y Ciencias Biol\u00f3gicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Marsili", 
            "givenName": "Nilda R.", 
            "id": "sg:person.01131216245.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01131216245.54"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National University of the Littoral", 
              "id": "https://www.grid.ac/institutes/grid.10798.37", 
              "name": [
                "C\u00e1tedras de Qu\u00edmica General y Anal\u00edtica I y II, Facultad de Bioqu\u00edmica y Ciencias Biol\u00f3gicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sobrero", 
            "givenName": "Mar\u00eda S.", 
            "id": "sg:person.015402121515.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015402121515.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National University of the Littoral", 
              "id": "https://www.grid.ac/institutes/grid.10798.37", 
              "name": [
                "C\u00e1tedras de Qu\u00edmica General y Anal\u00edtica I y II, Facultad de Bioqu\u00edmica y Ciencias Biol\u00f3gicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Goicoechea", 
            "givenName": "H\u00e9ctor C.", 
            "id": "sg:person.0754117262.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754117262.29"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-94-017-1026-8_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000847385", 
              "https://doi.org/10.1007/978-94-017-1026-8_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0169-7439(95)00049-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000953466"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0308-8146(95)90793-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004224487"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/an9952002483", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008151909"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0021-9673(00)00184-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011850697"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0021-9673(98)01019-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014298618"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0021-9673(00)00404-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016532730"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00032719208017968", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017669985"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/an9901501219", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018754590"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0003-2670(02)00373-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021263558"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jfca.1998.0804", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022696002"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0039-9140(02)00320-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022708471"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/mchj.1998.1675", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029288722"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/a606537f", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029609793"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0039-9140(00)00443-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032478593"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/a900325h", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035960353"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/chromsci/39.8.339", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038529195"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0003-2670(01)00842-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038692868"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0169-7439(01)00110-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041090785"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0165-9936(00)00045-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042280346"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/chromsci/38.8.345", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052853455"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/a1000016x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054964982"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/a1000016x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054964982"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac00087a718", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054971205"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac00162a020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054977122"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac00297a042", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054991896"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac960862b", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055073035"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac960862b", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055073035"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac970402y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055074066"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac970402y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055074066"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac970721p", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055074250"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac970721p", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055074250"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac970837l", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055074314"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac970837l", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055074314"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac990374e", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055076851"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac990374e", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055076851"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1080090891", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2003-05", 
        "datePublishedReg": "2003-05-01", 
        "description": "Sorbic (SOR) and benzoic (BEN) acids were determined in fruit juice samples by using a net analyte signal-based methodology named HLA/GO (an hybrid linear analysis presented by Goicoechea and Olivieri) applied to spectroscopic signals. The calibration set was built with several fruit juices in order to take into account the natural variability and concentrations of both analytes covering the range usually present in commercial samples. Relative errors of prediction (REP %) of 3.6 and 5.2% were calculated for SOR and BEN respectively. Several figures of merit were calculated-sensitivity, selectivity, analytical sensitivity, and limit of detection. The method is quantitative, with reasonably good recoveries and excellent precision (less than 1%). Wavelength selection was applied, based on the concept of net analyte signal regression, and it allowed us to improve the method performance in samples containing non-modelled interferences, e.g. fruit juices different to those used to build the calibration model.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00216-003-1835-z", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1357342", 
            "issn": [
              "1618-2642", 
              "1618-2650"
            ], 
            "name": "Analytical and Bioanalytical Chemistry", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "376"
          }
        ], 
        "name": "Spectrophotometric determination of sorbic and benzoic acids in fruit juices by a net analyte signal-based method with selection of the wavelength range to avoid non-modelled interferences", 
        "pagination": "126-133", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "0503f34aed140e607c0591e7928cc74ba26b393b64469b7daf34c1ef5a7a2f34"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "12677347"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101134327"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00216-003-1835-z"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1001052779"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00216-003-1835-z", 
          "https://app.dimensions.ai/details/publication/pub.1001052779"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T18:19", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000509.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs00216-003-1835-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00216-003-1835-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00216-003-1835-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00216-003-1835-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00216-003-1835-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    212 TRIPLES      21 PREDICATES      69 URIs      30 LITERALS      18 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00216-003-1835-z schema:about N2c0dbb0199374564a83be94ede35ea76
    2 N593df1cd51bb4f2cb47514bcc617f79f
    3 N5af2533f0a6f4d3caed73318aeaca7ff
    4 N67f8448cb4d54611af2fbbc98af7ec3c
    5 N6fa14dce9d404727a06d95a74f259d74
    6 N7a9fbd80bf1a421bb0f5b9f6f0610551
    7 Na0cdf364c63c4ae5a376edb1e876457a
    8 Nb57e6f7c92f54b829e7d0c6acd88a0a7
    9 Nebf756625e5f44d89de0f60248bc153d
    10 anzsrc-for:03
    11 anzsrc-for:0301
    12 schema:author Nd62013449d364ea6b0b5e370024dd96b
    13 schema:citation sg:pub.10.1007/978-94-017-1026-8_5
    14 https://app.dimensions.ai/details/publication/pub.1080090891
    15 https://doi.org/10.1006/jfca.1998.0804
    16 https://doi.org/10.1006/mchj.1998.1675
    17 https://doi.org/10.1016/0169-7439(95)00049-6
    18 https://doi.org/10.1016/0308-8146(95)90793-7
    19 https://doi.org/10.1016/s0003-2670(01)00842-x
    20 https://doi.org/10.1016/s0003-2670(02)00373-2
    21 https://doi.org/10.1016/s0021-9673(00)00184-9
    22 https://doi.org/10.1016/s0021-9673(00)00404-0
    23 https://doi.org/10.1016/s0021-9673(98)01019-x
    24 https://doi.org/10.1016/s0039-9140(00)00443-4
    25 https://doi.org/10.1016/s0039-9140(02)00320-x
    26 https://doi.org/10.1016/s0165-9936(00)00045-5
    27 https://doi.org/10.1016/s0169-7439(01)00110-1
    28 https://doi.org/10.1021/a1000016x
    29 https://doi.org/10.1021/ac00087a718
    30 https://doi.org/10.1021/ac00162a020
    31 https://doi.org/10.1021/ac00297a042
    32 https://doi.org/10.1021/ac960862b
    33 https://doi.org/10.1021/ac970402y
    34 https://doi.org/10.1021/ac970721p
    35 https://doi.org/10.1021/ac970837l
    36 https://doi.org/10.1021/ac990374e
    37 https://doi.org/10.1039/a606537f
    38 https://doi.org/10.1039/a900325h
    39 https://doi.org/10.1039/an9901501219
    40 https://doi.org/10.1039/an9952002483
    41 https://doi.org/10.1080/00032719208017968
    42 https://doi.org/10.1093/chromsci/38.8.345
    43 https://doi.org/10.1093/chromsci/39.8.339
    44 schema:datePublished 2003-05
    45 schema:datePublishedReg 2003-05-01
    46 schema:description Sorbic (SOR) and benzoic (BEN) acids were determined in fruit juice samples by using a net analyte signal-based methodology named HLA/GO (an hybrid linear analysis presented by Goicoechea and Olivieri) applied to spectroscopic signals. The calibration set was built with several fruit juices in order to take into account the natural variability and concentrations of both analytes covering the range usually present in commercial samples. Relative errors of prediction (REP %) of 3.6 and 5.2% were calculated for SOR and BEN respectively. Several figures of merit were calculated-sensitivity, selectivity, analytical sensitivity, and limit of detection. The method is quantitative, with reasonably good recoveries and excellent precision (less than 1%). Wavelength selection was applied, based on the concept of net analyte signal regression, and it allowed us to improve the method performance in samples containing non-modelled interferences, e.g. fruit juices different to those used to build the calibration model.
    47 schema:genre research_article
    48 schema:inLanguage en
    49 schema:isAccessibleForFree false
    50 schema:isPartOf N93c700ae609f40fd9377d8f709d951bb
    51 Nb28f6c28a95242fa9f1c1c965baed0db
    52 sg:journal.1357342
    53 schema:name Spectrophotometric determination of sorbic and benzoic acids in fruit juices by a net analyte signal-based method with selection of the wavelength range to avoid non-modelled interferences
    54 schema:pagination 126-133
    55 schema:productId N1c56ad56426245b8a1f639a57fb054ba
    56 N414624da32f140dcaca1d11c27464744
    57 N8b689e5b884a4ce7bba45a6de6a04d62
    58 Na0fd299fd3b14f55913482ff44b9f9c8
    59 Nfc42bae29b314ec393de3728da755738
    60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001052779
    61 https://doi.org/10.1007/s00216-003-1835-z
    62 schema:sdDatePublished 2019-04-10T18:19
    63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    64 schema:sdPublisher N4b3d867ebd944c809abb03a84f726c21
    65 schema:url http://link.springer.com/10.1007%2Fs00216-003-1835-z
    66 sgo:license sg:explorer/license/
    67 sgo:sdDataset articles
    68 rdf:type schema:ScholarlyArticle
    69 N1c56ad56426245b8a1f639a57fb054ba schema:name dimensions_id
    70 schema:value pub.1001052779
    71 rdf:type schema:PropertyValue
    72 N2c0dbb0199374564a83be94ede35ea76 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    73 schema:name Sorbic Acid
    74 rdf:type schema:DefinedTerm
    75 N414624da32f140dcaca1d11c27464744 schema:name pubmed_id
    76 schema:value 12677347
    77 rdf:type schema:PropertyValue
    78 N4b3d867ebd944c809abb03a84f726c21 schema:name Springer Nature - SN SciGraph project
    79 rdf:type schema:Organization
    80 N593df1cd51bb4f2cb47514bcc617f79f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    81 schema:name Beverages
    82 rdf:type schema:DefinedTerm
    83 N5af2533f0a6f4d3caed73318aeaca7ff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    84 schema:name Sensitivity and Specificity
    85 rdf:type schema:DefinedTerm
    86 N67f8448cb4d54611af2fbbc98af7ec3c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    87 schema:name Benzoates
    88 rdf:type schema:DefinedTerm
    89 N6fa14dce9d404727a06d95a74f259d74 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    90 schema:name Fruit
    91 rdf:type schema:DefinedTerm
    92 N732eb8ec5d4a4d13af7760518272d301 rdf:first sg:person.015402121515.01
    93 rdf:rest Nf12d641e46244679b89e5d58658883d5
    94 N7a9fbd80bf1a421bb0f5b9f6f0610551 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    95 schema:name Spectrophotometry, Atomic
    96 rdf:type schema:DefinedTerm
    97 N8b689e5b884a4ce7bba45a6de6a04d62 schema:name nlm_unique_id
    98 schema:value 101134327
    99 rdf:type schema:PropertyValue
    100 N93c700ae609f40fd9377d8f709d951bb schema:issueNumber 1
    101 rdf:type schema:PublicationIssue
    102 Na0cdf364c63c4ae5a376edb1e876457a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    103 schema:name Reproducibility of Results
    104 rdf:type schema:DefinedTerm
    105 Na0fd299fd3b14f55913482ff44b9f9c8 schema:name doi
    106 schema:value 10.1007/s00216-003-1835-z
    107 rdf:type schema:PropertyValue
    108 Nb28f6c28a95242fa9f1c1c965baed0db schema:volumeNumber 376
    109 rdf:type schema:PublicationVolume
    110 Nb57e6f7c92f54b829e7d0c6acd88a0a7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    111 schema:name Food Analysis
    112 rdf:type schema:DefinedTerm
    113 Nd62013449d364ea6b0b5e370024dd96b rdf:first sg:person.01131216245.54
    114 rdf:rest N732eb8ec5d4a4d13af7760518272d301
    115 Nebf756625e5f44d89de0f60248bc153d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    116 schema:name Reference Values
    117 rdf:type schema:DefinedTerm
    118 Nf12d641e46244679b89e5d58658883d5 rdf:first sg:person.0754117262.29
    119 rdf:rest rdf:nil
    120 Nfc42bae29b314ec393de3728da755738 schema:name readcube_id
    121 schema:value 0503f34aed140e607c0591e7928cc74ba26b393b64469b7daf34c1ef5a7a2f34
    122 rdf:type schema:PropertyValue
    123 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    124 schema:name Chemical Sciences
    125 rdf:type schema:DefinedTerm
    126 anzsrc-for:0301 schema:inDefinedTermSet anzsrc-for:
    127 schema:name Analytical Chemistry
    128 rdf:type schema:DefinedTerm
    129 sg:journal.1357342 schema:issn 1618-2642
    130 1618-2650
    131 schema:name Analytical and Bioanalytical Chemistry
    132 rdf:type schema:Periodical
    133 sg:person.01131216245.54 schema:affiliation https://www.grid.ac/institutes/grid.10798.37
    134 schema:familyName Marsili
    135 schema:givenName Nilda R.
    136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01131216245.54
    137 rdf:type schema:Person
    138 sg:person.015402121515.01 schema:affiliation https://www.grid.ac/institutes/grid.10798.37
    139 schema:familyName Sobrero
    140 schema:givenName María S.
    141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015402121515.01
    142 rdf:type schema:Person
    143 sg:person.0754117262.29 schema:affiliation https://www.grid.ac/institutes/grid.10798.37
    144 schema:familyName Goicoechea
    145 schema:givenName Héctor C.
    146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754117262.29
    147 rdf:type schema:Person
    148 sg:pub.10.1007/978-94-017-1026-8_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000847385
    149 https://doi.org/10.1007/978-94-017-1026-8_5
    150 rdf:type schema:CreativeWork
    151 https://app.dimensions.ai/details/publication/pub.1080090891 schema:CreativeWork
    152 https://doi.org/10.1006/jfca.1998.0804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022696002
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1006/mchj.1998.1675 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029288722
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1016/0169-7439(95)00049-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000953466
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1016/0308-8146(95)90793-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004224487
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1016/s0003-2670(01)00842-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1038692868
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1016/s0003-2670(02)00373-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021263558
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1016/s0021-9673(00)00184-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011850697
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1016/s0021-9673(00)00404-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016532730
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1016/s0021-9673(98)01019-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1014298618
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1016/s0039-9140(00)00443-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032478593
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1016/s0039-9140(02)00320-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1022708471
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1016/s0165-9936(00)00045-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042280346
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1016/s0169-7439(01)00110-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041090785
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1021/a1000016x schema:sameAs https://app.dimensions.ai/details/publication/pub.1054964982
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1021/ac00087a718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054971205
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1021/ac00162a020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054977122
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1021/ac00297a042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054991896
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1021/ac960862b schema:sameAs https://app.dimensions.ai/details/publication/pub.1055073035
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1021/ac970402y schema:sameAs https://app.dimensions.ai/details/publication/pub.1055074066
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1021/ac970721p schema:sameAs https://app.dimensions.ai/details/publication/pub.1055074250
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1021/ac970837l schema:sameAs https://app.dimensions.ai/details/publication/pub.1055074314
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1021/ac990374e schema:sameAs https://app.dimensions.ai/details/publication/pub.1055076851
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1039/a606537f schema:sameAs https://app.dimensions.ai/details/publication/pub.1029609793
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1039/a900325h schema:sameAs https://app.dimensions.ai/details/publication/pub.1035960353
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1039/an9901501219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018754590
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1039/an9952002483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008151909
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1080/00032719208017968 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017669985
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1093/chromsci/38.8.345 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052853455
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1093/chromsci/39.8.339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038529195
    209 rdf:type schema:CreativeWork
    210 https://www.grid.ac/institutes/grid.10798.37 schema:alternateName National University of the Littoral
    211 schema:name Cátedras de Química General y Analítica I y II, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina
    212 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...