The partial averaging Fourier path Integral approach based on the harmonic reference path View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-04

AUTHORS

Jenn-Kang Hwang

ABSTRACT

. The Monte Carlo Fourier path integral approach has proved to be quite useful in calculating equilibrium thermodynamic properties. One of its advantages is that it can be formulated in such a way as to include higher order terms using the partial averaging technique, which includes the contribution from higher terms usually neglected by the discretized path integral approach. In the original approach, the Feynman path integral is evaluated via a free-particle reference state. Here, using a new expression for the Feynman paths expanded around a harmonic reference path, we derive an alternative formulation for the density matrix element and its corresponding partial averaging expression. More... »

PAGES

359-363

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s002140050453

DOI

http://dx.doi.org/10.1007/s002140050453

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005702955


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0307", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Theoretical and Computational Chemistry", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Life Sciences, National Tsing Hua University, HsinChu 30034, Taiwan, TW", 
          "id": "http://www.grid.ac/institutes/grid.38348.34", 
          "name": [
            "Department of Life Sciences, National Tsing Hua University, HsinChu 30034, Taiwan, TW"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hwang", 
        "givenName": "Jenn-Kang", 
        "id": "sg:person.01364151270.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364151270.35"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1999-04", 
    "datePublishedReg": "1999-04-01", 
    "description": "Abstract. The Monte Carlo Fourier path integral approach has proved to be quite useful in calculating equilibrium thermodynamic properties. One of its advantages is that it can be formulated in such a way as to include higher order terms using the partial averaging technique, which includes the contribution from higher terms usually neglected by the discretized path integral approach. In the original approach, the Feynman path integral is evaluated via a free-particle reference state. Here, using a new expression for the Feynman paths expanded around a harmonic reference path, we derive an alternative formulation for the density matrix element and its corresponding partial averaging expression.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s002140050453", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1134081", 
        "issn": [
          "1432-881X", 
          "1432-2234"
        ], 
        "name": "Theoretical Chemistry Accounts", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "101"
      }
    ], 
    "keywords": [
      "integral approach", 
      "approach", 
      "way", 
      "terms", 
      "state", 
      "path", 
      "path integral approach", 
      "equilibrium thermodynamic properties", 
      "thermodynamic properties", 
      "properties", 
      "advantages", 
      "higher order terms", 
      "order terms", 
      "partial averaging technique", 
      "averaging technique", 
      "technique", 
      "contribution", 
      "higher terms", 
      "original approach", 
      "Feynman path integral", 
      "path integral", 
      "reference state", 
      "new expression", 
      "Feynman paths", 
      "reference path", 
      "alternative formulation", 
      "formulation", 
      "density matrix elements", 
      "elements", 
      "Monte Carlo Fourier path integral approach", 
      "Carlo Fourier path integral approach", 
      "Fourier path integral approach", 
      "discretized path integral approach", 
      "integrals", 
      "free-particle reference state", 
      "expression", 
      "harmonic reference path", 
      "matrix elements", 
      "corresponding partial averaging expression", 
      "partial averaging expression", 
      "averaging expression", 
      "partial averaging Fourier path Integral approach", 
      "averaging Fourier path Integral approach"
    ], 
    "name": "The partial averaging Fourier path Integral approach based on the harmonic reference path", 
    "pagination": "359-363", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005702955"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s002140050453"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s002140050453", 
      "https://app.dimensions.ai/details/publication/pub.1005702955"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_341.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s002140050453"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s002140050453'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s002140050453'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s002140050453'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s002140050453'


 

This table displays all metadata directly associated to this object as RDF triples.

101 TRIPLES      21 PREDICATES      69 URIs      61 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s002140050453 schema:about anzsrc-for:03
2 anzsrc-for:0307
3 schema:author N45087f1537694b67b6bcf60fe8b609f6
4 schema:datePublished 1999-04
5 schema:datePublishedReg 1999-04-01
6 schema:description Abstract. The Monte Carlo Fourier path integral approach has proved to be quite useful in calculating equilibrium thermodynamic properties. One of its advantages is that it can be formulated in such a way as to include higher order terms using the partial averaging technique, which includes the contribution from higher terms usually neglected by the discretized path integral approach. In the original approach, the Feynman path integral is evaluated via a free-particle reference state. Here, using a new expression for the Feynman paths expanded around a harmonic reference path, we derive an alternative formulation for the density matrix element and its corresponding partial averaging expression.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N628df2f8a6b744ada48962cd30ff01b7
11 Nf620361f34b344adab51757e17c5997b
12 sg:journal.1134081
13 schema:keywords Carlo Fourier path integral approach
14 Feynman path integral
15 Feynman paths
16 Fourier path integral approach
17 Monte Carlo Fourier path integral approach
18 advantages
19 alternative formulation
20 approach
21 averaging Fourier path Integral approach
22 averaging expression
23 averaging technique
24 contribution
25 corresponding partial averaging expression
26 density matrix elements
27 discretized path integral approach
28 elements
29 equilibrium thermodynamic properties
30 expression
31 formulation
32 free-particle reference state
33 harmonic reference path
34 higher order terms
35 higher terms
36 integral approach
37 integrals
38 matrix elements
39 new expression
40 order terms
41 original approach
42 partial averaging Fourier path Integral approach
43 partial averaging expression
44 partial averaging technique
45 path
46 path integral
47 path integral approach
48 properties
49 reference path
50 reference state
51 state
52 technique
53 terms
54 thermodynamic properties
55 way
56 schema:name The partial averaging Fourier path Integral approach based on the harmonic reference path
57 schema:pagination 359-363
58 schema:productId N535c0e58bc8e4810b92f5f7afb922e0d
59 N9a607586a19540a798ef7c81c902a0a1
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005702955
61 https://doi.org/10.1007/s002140050453
62 schema:sdDatePublished 2022-01-01T18:11
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher N5edb0606e4034f0ea8253ebaf6ae2818
65 schema:url https://doi.org/10.1007/s002140050453
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N45087f1537694b67b6bcf60fe8b609f6 rdf:first sg:person.01364151270.35
70 rdf:rest rdf:nil
71 N535c0e58bc8e4810b92f5f7afb922e0d schema:name dimensions_id
72 schema:value pub.1005702955
73 rdf:type schema:PropertyValue
74 N5edb0606e4034f0ea8253ebaf6ae2818 schema:name Springer Nature - SN SciGraph project
75 rdf:type schema:Organization
76 N628df2f8a6b744ada48962cd30ff01b7 schema:volumeNumber 101
77 rdf:type schema:PublicationVolume
78 N9a607586a19540a798ef7c81c902a0a1 schema:name doi
79 schema:value 10.1007/s002140050453
80 rdf:type schema:PropertyValue
81 Nf620361f34b344adab51757e17c5997b schema:issueNumber 5
82 rdf:type schema:PublicationIssue
83 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
84 schema:name Chemical Sciences
85 rdf:type schema:DefinedTerm
86 anzsrc-for:0307 schema:inDefinedTermSet anzsrc-for:
87 schema:name Theoretical and Computational Chemistry
88 rdf:type schema:DefinedTerm
89 sg:journal.1134081 schema:issn 1432-2234
90 1432-881X
91 schema:name Theoretical Chemistry Accounts
92 schema:publisher Springer Nature
93 rdf:type schema:Periodical
94 sg:person.01364151270.35 schema:affiliation grid-institutes:grid.38348.34
95 schema:familyName Hwang
96 schema:givenName Jenn-Kang
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364151270.35
98 rdf:type schema:Person
99 grid-institutes:grid.38348.34 schema:alternateName Department of Life Sciences, National Tsing Hua University, HsinChu 30034, Taiwan, TW
100 schema:name Department of Life Sciences, National Tsing Hua University, HsinChu 30034, Taiwan, TW
101 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...