Sequence classification of water channels and related proteins in view of functional predictions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-02

AUTHORS

B. Tallur, J. Nicolas, A. Froger, D. Thomas, C. Delamarche

ABSTRACT

. We have worked with a classification method based upon a notion of probabilistic similarity or “likelihood of similarity” between aligned sequences. One important parameter, among others, affecting the sequence similarities and hence the classification results is the amino acid similarity matrix. We present a method for choosing the most adapted matrix to classify protein sequences. This method has been applied to the transmembrane channels of the major intrinsic protein (MIP) family. At present, two functional subgroups have been well characterized in this family: (1) specific water transport by the aquaporins and (2) small neutral solutes transport. The aim of the present study is to show the usefulness of the classification method in the prediction of sequence segments important for substrate selectivity. Moreover, we show that this method can also be used to predict the function of undetermined MIP proteins. The method could be applied to other protein families as well. More... »

PAGES

77-81

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s002140050410

DOI

http://dx.doi.org/10.1007/s002140050410

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019248700


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0307", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Theoretical and Computational Chemistry", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "IRISA, Campus Universitaire de Beaulieu, Avenue de G\u00e9n\u00e9ral Leclerc, F-35042 Rennes Cedex, France, FR", 
          "id": "http://www.grid.ac/institutes/grid.420225.3", 
          "name": [
            "IRISA, Campus Universitaire de Beaulieu, Avenue de G\u00e9n\u00e9ral Leclerc, F-35042 Rennes Cedex, France, FR"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tallur", 
        "givenName": "B.", 
        "id": "sg:person.07452354621.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07452354621.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IRISA, Campus Universitaire de Beaulieu, Avenue de G\u00e9n\u00e9ral Leclerc, F-35042 Rennes Cedex, France, FR", 
          "id": "http://www.grid.ac/institutes/grid.420225.3", 
          "name": [
            "IRISA, Campus Universitaire de Beaulieu, Avenue de G\u00e9n\u00e9ral Leclerc, F-35042 Rennes Cedex, France, FR"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nicolas", 
        "givenName": "J.", 
        "id": "sg:person.01143715001.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143715001.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CNRS UPRES-A 6026, Campus Universitaire de Beaulieu, Avenue de G\u00e9n\u00e9ral Leclerc, F-35042 Rennes Cedex, France, FR", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "CNRS UPRES-A 6026, Campus Universitaire de Beaulieu, Avenue de G\u00e9n\u00e9ral Leclerc, F-35042 Rennes Cedex, France, FR"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Froger", 
        "givenName": "A.", 
        "id": "sg:person.01047035231.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047035231.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CNRS UPRES-A 6026, Campus Universitaire de Beaulieu, Avenue de G\u00e9n\u00e9ral Leclerc, F-35042 Rennes Cedex, France, FR", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "CNRS UPRES-A 6026, Campus Universitaire de Beaulieu, Avenue de G\u00e9n\u00e9ral Leclerc, F-35042 Rennes Cedex, France, FR"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thomas", 
        "givenName": "D.", 
        "id": "sg:person.01076664627.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076664627.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CNRS UPRES-A 6026, Campus Universitaire de Beaulieu, Avenue de G\u00e9n\u00e9ral Leclerc, F-35042 Rennes Cedex, France, FR", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "CNRS UPRES-A 6026, Campus Universitaire de Beaulieu, Avenue de G\u00e9n\u00e9ral Leclerc, F-35042 Rennes Cedex, France, FR"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Delamarche", 
        "givenName": "C.", 
        "id": "sg:person.0651776207.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651776207.47"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1999-02", 
    "datePublishedReg": "1999-02-01", 
    "description": "Abstract. We have worked with a classification method based upon a notion of probabilistic similarity or \u201clikelihood of similarity\u201d between aligned sequences. One important parameter, among others, affecting the sequence similarities and hence the classification results is the amino acid similarity matrix. We present a method for choosing the most adapted matrix to classify protein sequences. This method has been applied to the transmembrane channels of the major intrinsic protein (MIP) family. At present, two functional subgroups have been well characterized in this family: (1) specific water transport by the aquaporins and (2) small neutral solutes transport. The aim of the present study is to show the usefulness of the classification method in the prediction of sequence segments important for substrate selectivity. Moreover, we show that this method can also be used to predict the function of undetermined MIP proteins. The method could be applied to other protein families as well.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s002140050410", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1134081", 
        "issn": [
          "1432-881X", 
          "1432-2234"
        ], 
        "name": "Theoretical Chemistry Accounts", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "101"
      }
    ], 
    "keywords": [
      "protein family", 
      "small neutral solutes transport", 
      "major intrinsic protein (MIP) family", 
      "Mip protein", 
      "sequence similarity", 
      "functional prediction", 
      "neutral solute transport", 
      "protein sequences", 
      "related proteins", 
      "substrate selectivity", 
      "aligned sequences", 
      "transmembrane channels", 
      "sequence segments", 
      "functional subgroups", 
      "protein", 
      "water channels", 
      "sequence", 
      "water transport", 
      "amino acid similarity matrices", 
      "family", 
      "similarity", 
      "aquaporins", 
      "likelihood of similarity", 
      "similarity matrix", 
      "transport", 
      "sequence classification", 
      "present study", 
      "solute transport", 
      "function", 
      "segments", 
      "channels", 
      "matrix", 
      "prediction", 
      "study", 
      "selectivity", 
      "results", 
      "method", 
      "likelihood", 
      "classification", 
      "view", 
      "probabilistic similarity", 
      "subgroups", 
      "aim", 
      "notion", 
      "important parameters", 
      "usefulness", 
      "classification method", 
      "parameters", 
      "classification results", 
      "acid similarity matrix", 
      "intrinsic protein (MIP) family", 
      "specific water transport", 
      "undetermined MIP proteins"
    ], 
    "name": "Sequence classification of water channels and related proteins in view of functional predictions", 
    "pagination": "77-81", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019248700"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s002140050410"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s002140050410", 
      "https://app.dimensions.ai/details/publication/pub.1019248700"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_324.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s002140050410"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s002140050410'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s002140050410'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s002140050410'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s002140050410'


 

This table displays all metadata directly associated to this object as RDF triples.

142 TRIPLES      21 PREDICATES      79 URIs      71 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s002140050410 schema:about anzsrc-for:03
2 anzsrc-for:0307
3 schema:author N7c3e070d8bf24302bfc2b03f8406839f
4 schema:datePublished 1999-02
5 schema:datePublishedReg 1999-02-01
6 schema:description Abstract. We have worked with a classification method based upon a notion of probabilistic similarity or “likelihood of similarity” between aligned sequences. One important parameter, among others, affecting the sequence similarities and hence the classification results is the amino acid similarity matrix. We present a method for choosing the most adapted matrix to classify protein sequences. This method has been applied to the transmembrane channels of the major intrinsic protein (MIP) family. At present, two functional subgroups have been well characterized in this family: (1) specific water transport by the aquaporins and (2) small neutral solutes transport. The aim of the present study is to show the usefulness of the classification method in the prediction of sequence segments important for substrate selectivity. Moreover, we show that this method can also be used to predict the function of undetermined MIP proteins. The method could be applied to other protein families as well.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N525b20098727405e841be3a91986d333
11 Nf7083c362b1541f5aaa75f25c222d4a5
12 sg:journal.1134081
13 schema:keywords Mip protein
14 acid similarity matrix
15 aim
16 aligned sequences
17 amino acid similarity matrices
18 aquaporins
19 channels
20 classification
21 classification method
22 classification results
23 family
24 function
25 functional prediction
26 functional subgroups
27 important parameters
28 intrinsic protein (MIP) family
29 likelihood
30 likelihood of similarity
31 major intrinsic protein (MIP) family
32 matrix
33 method
34 neutral solute transport
35 notion
36 parameters
37 prediction
38 present study
39 probabilistic similarity
40 protein
41 protein family
42 protein sequences
43 related proteins
44 results
45 segments
46 selectivity
47 sequence
48 sequence classification
49 sequence segments
50 sequence similarity
51 similarity
52 similarity matrix
53 small neutral solutes transport
54 solute transport
55 specific water transport
56 study
57 subgroups
58 substrate selectivity
59 transmembrane channels
60 transport
61 undetermined MIP proteins
62 usefulness
63 view
64 water channels
65 water transport
66 schema:name Sequence classification of water channels and related proteins in view of functional predictions
67 schema:pagination 77-81
68 schema:productId N2ebac376f16f4765850fc3feef96c83d
69 N34869eed6c064390b48d7258af5ec42c
70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019248700
71 https://doi.org/10.1007/s002140050410
72 schema:sdDatePublished 2021-12-01T19:12
73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
74 schema:sdPublisher Nf8b25ac641564bbea9afe3421d795ae0
75 schema:url https://doi.org/10.1007/s002140050410
76 sgo:license sg:explorer/license/
77 sgo:sdDataset articles
78 rdf:type schema:ScholarlyArticle
79 N2ebac376f16f4765850fc3feef96c83d schema:name doi
80 schema:value 10.1007/s002140050410
81 rdf:type schema:PropertyValue
82 N34869eed6c064390b48d7258af5ec42c schema:name dimensions_id
83 schema:value pub.1019248700
84 rdf:type schema:PropertyValue
85 N525b20098727405e841be3a91986d333 schema:issueNumber 1
86 rdf:type schema:PublicationIssue
87 N6f0f8367661041b19b379ab3e924e583 rdf:first sg:person.01143715001.20
88 rdf:rest Nae7515d400c74d7fa587f23bdfd93511
89 N7c3e070d8bf24302bfc2b03f8406839f rdf:first sg:person.07452354621.08
90 rdf:rest N6f0f8367661041b19b379ab3e924e583
91 Nae7515d400c74d7fa587f23bdfd93511 rdf:first sg:person.01047035231.26
92 rdf:rest Nafb18c4cdb2043e788e9017869e05aeb
93 Nafb18c4cdb2043e788e9017869e05aeb rdf:first sg:person.01076664627.37
94 rdf:rest Ncd1954feb6414250b2000d274c1a3194
95 Ncd1954feb6414250b2000d274c1a3194 rdf:first sg:person.0651776207.47
96 rdf:rest rdf:nil
97 Nf7083c362b1541f5aaa75f25c222d4a5 schema:volumeNumber 101
98 rdf:type schema:PublicationVolume
99 Nf8b25ac641564bbea9afe3421d795ae0 schema:name Springer Nature - SN SciGraph project
100 rdf:type schema:Organization
101 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
102 schema:name Chemical Sciences
103 rdf:type schema:DefinedTerm
104 anzsrc-for:0307 schema:inDefinedTermSet anzsrc-for:
105 schema:name Theoretical and Computational Chemistry
106 rdf:type schema:DefinedTerm
107 sg:journal.1134081 schema:issn 1432-2234
108 1432-881X
109 schema:name Theoretical Chemistry Accounts
110 schema:publisher Springer Nature
111 rdf:type schema:Periodical
112 sg:person.01047035231.26 schema:affiliation grid-institutes:None
113 schema:familyName Froger
114 schema:givenName A.
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047035231.26
116 rdf:type schema:Person
117 sg:person.01076664627.37 schema:affiliation grid-institutes:None
118 schema:familyName Thomas
119 schema:givenName D.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076664627.37
121 rdf:type schema:Person
122 sg:person.01143715001.20 schema:affiliation grid-institutes:grid.420225.3
123 schema:familyName Nicolas
124 schema:givenName J.
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143715001.20
126 rdf:type schema:Person
127 sg:person.0651776207.47 schema:affiliation grid-institutes:None
128 schema:familyName Delamarche
129 schema:givenName C.
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651776207.47
131 rdf:type schema:Person
132 sg:person.07452354621.08 schema:affiliation grid-institutes:grid.420225.3
133 schema:familyName Tallur
134 schema:givenName B.
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07452354621.08
136 rdf:type schema:Person
137 grid-institutes:None schema:alternateName CNRS UPRES-A 6026, Campus Universitaire de Beaulieu, Avenue de Général Leclerc, F-35042 Rennes Cedex, France, FR
138 schema:name CNRS UPRES-A 6026, Campus Universitaire de Beaulieu, Avenue de Général Leclerc, F-35042 Rennes Cedex, France, FR
139 rdf:type schema:Organization
140 grid-institutes:grid.420225.3 schema:alternateName IRISA, Campus Universitaire de Beaulieu, Avenue de Général Leclerc, F-35042 Rennes Cedex, France, FR
141 schema:name IRISA, Campus Universitaire de Beaulieu, Avenue de Général Leclerc, F-35042 Rennes Cedex, France, FR
142 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...