Critical assessment of charge transfer estimates in non-covalent graphene doping View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-11

AUTHORS

Iann C. Gerber, R. Poteau

ABSTRACT

Non-covalent doping by pure charge transfer complexes is one possible solution to tune at low-cost electronic properties of carbon-based nanostructures, more specifically to enhance their conductivity. Here, we present a thorough density functional theory-based study of charge transfer estimates, by comparing available integration/partitioning scheme of the electronic density in periodic boundary conditions, as well as the influence of the exchange-correlation term, the cornerstone of DFT by testing various exchange-correlation functionals. Our test case is made of a freestanding graphene monolayer in interaction with two prototypical donor/acceptor molecules: TTF and TCNE. These results illustrate the role played by the exact exchange in the description of charge transfer processes, as well as the difference between the density-based and wavefunction-based partitioning schemes used in this study. When using hybrid functionals, charge transfer are usually smaller than when using standard generalized gradient approximations, especially for the donor molecule. In terms of electronic density partitioning schemes, both strategies provide quite similar charge transfers; however, each intra-molecular decomposition presents very distinct features, making the discussion of atomic charge reorganization on the electron/donor molecule highly dependent on the selected partitioning scheme. More... »

PAGES

156

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00214-018-2365-2

DOI

http://dx.doi.org/10.1007/s00214-018-2365-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107954339


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Laboratoire de Physique et Chimie des Nano-Objets", 
          "id": "https://www.grid.ac/institutes/grid.462768.9", 
          "name": [
            "LPCNO, INSA-CNRS-UPS, Universit\u00e9 F\u00e9d\u00e9rale de Toulouse Midi-Pyr\u00e9n\u00e9es, 135 Av. de Rangueil, 31077, Toulouse, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gerber", 
        "givenName": "Iann C.", 
        "id": "sg:person.01061541004.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061541004.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de Physique et Chimie des Nano-Objets", 
          "id": "https://www.grid.ac/institutes/grid.462768.9", 
          "name": [
            "LPCNO, INSA-CNRS-UPS, Universit\u00e9 F\u00e9d\u00e9rale de Toulouse Midi-Pyr\u00e9n\u00e9es, 135 Av. de Rangueil, 31077, Toulouse, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Poteau", 
        "givenName": "R.", 
        "id": "sg:person.0713753612.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713753612.20"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature04233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001061831", 
          "https://doi.org/10.1038/nature04233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001061831", 
          "https://doi.org/10.1038/nature04233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001061831", 
          "https://doi.org/10.1038/nature04233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.carbon.2016.10.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002783645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cr3000412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004010978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2949753", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004881595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/20/47/472204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008646511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0927-0256(96)00008-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008708156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009714128", 
          "https://doi.org/10.1038/nature04235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009714128", 
          "https://doi.org/10.1038/nature04235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009714128", 
          "https://doi.org/10.1038/nature04235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-4484/21/6/065201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011548796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-4484/21/6/065201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011548796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.83.407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015873393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.83.407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015873393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.commatsci.2005.04.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015956400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cplett.2005.08.060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018491596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp311584r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018578032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ct200866d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018899581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1102896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019008412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.472933", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020195458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/22/2/022201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021949538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/22/2/022201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021949538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.478522", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022454536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcc.24300", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026596180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00268976.2016.1213437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026962543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp202489s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029111413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp202489s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029111413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jz4010174", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031486819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/26/44/443001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032850734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcc.540141213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036378669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcc.23424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038212482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/21/8/084204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038460204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcc.22885", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039587735"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/asia.200800486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040289581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/asia.200800486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040289581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.83.195131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040559330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.83.195131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040559330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2085170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041142582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.chemrev.5b00620", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042902368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.commatsci.2011.12.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049475977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c3sc51100f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050034728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c0jm02922j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050312053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1849", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052791836", 
          "https://doi.org/10.1038/nmat1849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcc.20575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053172531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.jpcc.5b01683", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055108363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja071658g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055844819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja071658g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055844819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp306544m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056090658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp806905e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056110430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp806905e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056110430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1668634", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057745445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2187006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057844424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2759209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057864437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.449486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058027505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4768673", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058064145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.47.558", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060566310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.47.558", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060566310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.50.17953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060573414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.50.17953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060573414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.59.1758", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060591374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.59.1758", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060591374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.155403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060632362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.155403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060632362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.3865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.3865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814179"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-11", 
    "datePublishedReg": "2018-11-01", 
    "description": "Non-covalent doping by pure charge transfer complexes is one possible solution to tune at low-cost electronic properties of carbon-based nanostructures, more specifically to enhance their conductivity. Here, we present a thorough density functional theory-based study of charge transfer estimates, by comparing available integration/partitioning scheme of the electronic density in periodic boundary conditions, as well as the influence of the exchange-correlation term, the cornerstone of DFT by testing various exchange-correlation functionals. Our test case is made of a freestanding graphene monolayer in interaction with two prototypical donor/acceptor molecules: TTF and TCNE. These results illustrate the role played by the exact exchange in the description of charge transfer processes, as well as the difference between the density-based and wavefunction-based partitioning schemes used in this study. When using hybrid functionals, charge transfer are usually smaller than when using standard generalized gradient approximations, especially for the donor molecule. In terms of electronic density partitioning schemes, both strategies provide quite similar charge transfers; however, each intra-molecular decomposition presents very distinct features, making the discussion of atomic charge reorganization on the electron/donor molecule highly dependent on the selected partitioning scheme.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00214-018-2365-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1134081", 
        "issn": [
          "1432-881X", 
          "1432-2234"
        ], 
        "name": "Theoretical Chemistry Accounts", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "137"
      }
    ], 
    "name": "Critical assessment of charge transfer estimates in non-covalent graphene doping", 
    "pagination": "156", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b30d2d900eec696e7428686ca07c3ad44b6cedd530704509544f3ac9ec261692"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00214-018-2365-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107954339"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00214-018-2365-2", 
      "https://app.dimensions.ai/details/publication/pub.1107954339"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000575.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00214-018-2365-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00214-018-2365-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00214-018-2365-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00214-018-2365-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00214-018-2365-2'


 

This table displays all metadata directly associated to this object as RDF triples.

218 TRIPLES      21 PREDICATES      76 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00214-018-2365-2 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Nb71e7e8b38374b7da20b668ba2d063d6
4 schema:citation sg:pub.10.1038/nature04233
5 sg:pub.10.1038/nature04235
6 sg:pub.10.1038/nmat1849
7 https://doi.org/10.1002/asia.200800486
8 https://doi.org/10.1002/jcc.20575
9 https://doi.org/10.1002/jcc.22885
10 https://doi.org/10.1002/jcc.23424
11 https://doi.org/10.1002/jcc.24300
12 https://doi.org/10.1002/jcc.540141213
13 https://doi.org/10.1016/0927-0256(96)00008-0
14 https://doi.org/10.1016/j.carbon.2016.10.024
15 https://doi.org/10.1016/j.commatsci.2005.04.010
16 https://doi.org/10.1016/j.commatsci.2011.12.035
17 https://doi.org/10.1016/j.cplett.2005.08.060
18 https://doi.org/10.1021/acs.chemrev.5b00620
19 https://doi.org/10.1021/acs.jpcc.5b01683
20 https://doi.org/10.1021/cr3000412
21 https://doi.org/10.1021/ct200866d
22 https://doi.org/10.1021/ja071658g
23 https://doi.org/10.1021/jp202489s
24 https://doi.org/10.1021/jp306544m
25 https://doi.org/10.1021/jp311584r
26 https://doi.org/10.1021/jp806905e
27 https://doi.org/10.1021/jz4010174
28 https://doi.org/10.1039/c0jm02922j
29 https://doi.org/10.1039/c3sc51100f
30 https://doi.org/10.1063/1.1668634
31 https://doi.org/10.1063/1.2085170
32 https://doi.org/10.1063/1.2187006
33 https://doi.org/10.1063/1.2759209
34 https://doi.org/10.1063/1.2949753
35 https://doi.org/10.1063/1.449486
36 https://doi.org/10.1063/1.472933
37 https://doi.org/10.1063/1.4768673
38 https://doi.org/10.1063/1.478522
39 https://doi.org/10.1080/00268976.2016.1213437
40 https://doi.org/10.1088/0953-8984/20/47/472204
41 https://doi.org/10.1088/0953-8984/21/8/084204
42 https://doi.org/10.1088/0953-8984/22/2/022201
43 https://doi.org/10.1088/0953-8984/26/44/443001
44 https://doi.org/10.1088/0957-4484/21/6/065201
45 https://doi.org/10.1103/physrevb.47.558
46 https://doi.org/10.1103/physrevb.50.17953
47 https://doi.org/10.1103/physrevb.59.1758
48 https://doi.org/10.1103/physrevb.81.155403
49 https://doi.org/10.1103/physrevb.83.195131
50 https://doi.org/10.1103/physrevlett.77.3865
51 https://doi.org/10.1103/revmodphys.83.407
52 https://doi.org/10.1126/science.1102896
53 schema:datePublished 2018-11
54 schema:datePublishedReg 2018-11-01
55 schema:description Non-covalent doping by pure charge transfer complexes is one possible solution to tune at low-cost electronic properties of carbon-based nanostructures, more specifically to enhance their conductivity. Here, we present a thorough density functional theory-based study of charge transfer estimates, by comparing available integration/partitioning scheme of the electronic density in periodic boundary conditions, as well as the influence of the exchange-correlation term, the cornerstone of DFT by testing various exchange-correlation functionals. Our test case is made of a freestanding graphene monolayer in interaction with two prototypical donor/acceptor molecules: TTF and TCNE. These results illustrate the role played by the exact exchange in the description of charge transfer processes, as well as the difference between the density-based and wavefunction-based partitioning schemes used in this study. When using hybrid functionals, charge transfer are usually smaller than when using standard generalized gradient approximations, especially for the donor molecule. In terms of electronic density partitioning schemes, both strategies provide quite similar charge transfers; however, each intra-molecular decomposition presents very distinct features, making the discussion of atomic charge reorganization on the electron/donor molecule highly dependent on the selected partitioning scheme.
56 schema:genre research_article
57 schema:inLanguage en
58 schema:isAccessibleForFree false
59 schema:isPartOf N9401f5b7e2e647b7bac20736b20d7401
60 Nf05a20f2b25444c7813c817b211f51e7
61 sg:journal.1134081
62 schema:name Critical assessment of charge transfer estimates in non-covalent graphene doping
63 schema:pagination 156
64 schema:productId N4f3eddbf6b324398b6cc2e18109a5c72
65 N6b24b72ddba447eb8edf94d5e557e789
66 Nd4cc367494034b1dbc4fb0581df70df8
67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107954339
68 https://doi.org/10.1007/s00214-018-2365-2
69 schema:sdDatePublished 2019-04-10T13:28
70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
71 schema:sdPublisher N17d6ec33615b4078800d0ab7e6f10dac
72 schema:url https://link.springer.com/10.1007%2Fs00214-018-2365-2
73 sgo:license sg:explorer/license/
74 sgo:sdDataset articles
75 rdf:type schema:ScholarlyArticle
76 N17d6ec33615b4078800d0ab7e6f10dac schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 N4f3eddbf6b324398b6cc2e18109a5c72 schema:name doi
79 schema:value 10.1007/s00214-018-2365-2
80 rdf:type schema:PropertyValue
81 N6b24b72ddba447eb8edf94d5e557e789 schema:name dimensions_id
82 schema:value pub.1107954339
83 rdf:type schema:PropertyValue
84 N9401f5b7e2e647b7bac20736b20d7401 schema:volumeNumber 137
85 rdf:type schema:PublicationVolume
86 Nb71e7e8b38374b7da20b668ba2d063d6 rdf:first sg:person.01061541004.87
87 rdf:rest Ne37cd2eba2ff48549bd7f5c37b00905b
88 Nd4cc367494034b1dbc4fb0581df70df8 schema:name readcube_id
89 schema:value b30d2d900eec696e7428686ca07c3ad44b6cedd530704509544f3ac9ec261692
90 rdf:type schema:PropertyValue
91 Ne37cd2eba2ff48549bd7f5c37b00905b rdf:first sg:person.0713753612.20
92 rdf:rest rdf:nil
93 Nf05a20f2b25444c7813c817b211f51e7 schema:issueNumber 11
94 rdf:type schema:PublicationIssue
95 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
96 schema:name Chemical Sciences
97 rdf:type schema:DefinedTerm
98 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
99 schema:name Physical Chemistry (incl. Structural)
100 rdf:type schema:DefinedTerm
101 sg:journal.1134081 schema:issn 1432-2234
102 1432-881X
103 schema:name Theoretical Chemistry Accounts
104 rdf:type schema:Periodical
105 sg:person.01061541004.87 schema:affiliation https://www.grid.ac/institutes/grid.462768.9
106 schema:familyName Gerber
107 schema:givenName Iann C.
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061541004.87
109 rdf:type schema:Person
110 sg:person.0713753612.20 schema:affiliation https://www.grid.ac/institutes/grid.462768.9
111 schema:familyName Poteau
112 schema:givenName R.
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713753612.20
114 rdf:type schema:Person
115 sg:pub.10.1038/nature04233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001061831
116 https://doi.org/10.1038/nature04233
117 rdf:type schema:CreativeWork
118 sg:pub.10.1038/nature04235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009714128
119 https://doi.org/10.1038/nature04235
120 rdf:type schema:CreativeWork
121 sg:pub.10.1038/nmat1849 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052791836
122 https://doi.org/10.1038/nmat1849
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1002/asia.200800486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040289581
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1002/jcc.20575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053172531
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1002/jcc.22885 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039587735
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1002/jcc.23424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038212482
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1002/jcc.24300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026596180
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1002/jcc.540141213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036378669
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/0927-0256(96)00008-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008708156
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.carbon.2016.10.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002783645
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.commatsci.2005.04.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015956400
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.commatsci.2011.12.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049475977
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.cplett.2005.08.060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018491596
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1021/acs.chemrev.5b00620 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042902368
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1021/acs.jpcc.5b01683 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055108363
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1021/cr3000412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004010978
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1021/ct200866d schema:sameAs https://app.dimensions.ai/details/publication/pub.1018899581
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1021/ja071658g schema:sameAs https://app.dimensions.ai/details/publication/pub.1055844819
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1021/jp202489s schema:sameAs https://app.dimensions.ai/details/publication/pub.1029111413
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1021/jp306544m schema:sameAs https://app.dimensions.ai/details/publication/pub.1056090658
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1021/jp311584r schema:sameAs https://app.dimensions.ai/details/publication/pub.1018578032
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1021/jp806905e schema:sameAs https://app.dimensions.ai/details/publication/pub.1056110430
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1021/jz4010174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031486819
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1039/c0jm02922j schema:sameAs https://app.dimensions.ai/details/publication/pub.1050312053
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1039/c3sc51100f schema:sameAs https://app.dimensions.ai/details/publication/pub.1050034728
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1063/1.1668634 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057745445
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1063/1.2085170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041142582
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1063/1.2187006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057844424
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1063/1.2759209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057864437
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1063/1.2949753 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004881595
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1063/1.449486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058027505
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1063/1.472933 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020195458
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1063/1.4768673 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058064145
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1063/1.478522 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022454536
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1080/00268976.2016.1213437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026962543
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1088/0953-8984/20/47/472204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008646511
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1088/0953-8984/21/8/084204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038460204
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1088/0953-8984/22/2/022201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021949538
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1088/0953-8984/26/44/443001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032850734
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1088/0957-4484/21/6/065201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011548796
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1103/physrevb.47.558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060566310
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1103/physrevb.50.17953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060573414
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1103/physrevb.59.1758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060591374
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1103/physrevb.81.155403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060632362
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1103/physrevb.83.195131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040559330
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1103/physrevlett.77.3865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060814179
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1103/revmodphys.83.407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015873393
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1126/science.1102896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019008412
215 rdf:type schema:CreativeWork
216 https://www.grid.ac/institutes/grid.462768.9 schema:alternateName Laboratoire de Physique et Chimie des Nano-Objets
217 schema:name LPCNO, INSA-CNRS-UPS, Université Fédérale de Toulouse Midi-Pyrénées, 135 Av. de Rangueil, 31077, Toulouse, France
218 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...