Natural orbitals of the ground state of the two-electron harmonium atom View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

Jerzy Cioslowski

ABSTRACT

The radial components of the natural orbitals (NOs) pertaining to the 1S+ ground state of the two-electron harmonium atom are found to satisfy homogeneous differential equations at the values of the confinement strength ω at which the respective correlation factors are given by polynomials. Together with the angular momentum l of the NOs, the degrees of these polynomials determine the orders of the differential equations, eigenvalues of which (arising from well-defined boundary conditions) yield the natural amplitudes. In the case of l=0, analysis of these equations uncovers certain properties of the NOs whereas application of a WKB-like approximation produces asymptotic expressions for both the NOs and the corresponding natural amplitudes that hold when the latter are small negative numbers. Extensive numerical calculations reveal that these expressions remain valid for arbitrary values of ω. The approximate s-type NOs, which are remarkably accurate at sufficiently small radial distances and exhibit universal scaling, differ qualitatively from the eigenfunctions of the core Hamiltonian even at the ω→∞ limit of vanishing electron correlation. More... »

PAGES

173

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00214-018-2362-5

DOI

http://dx.doi.org/10.1007/s00214-018-2362-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1109809107


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for the Physics of Complex Systems", 
          "id": "https://www.grid.ac/institutes/grid.419560.f", 
          "name": [
            "Institute of Physics, University of Szczecin, Wielkopolska 15, 70-451, Szczecin, Poland", 
            "Max-Planck-Institut f\u00fcr Physik komplexer Systeme, N\u00f6thnitzer Str.\u00a038, D-01187, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cioslowski", 
        "givenName": "Jerzy", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/qua.22021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000012620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qua.22021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000012620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-4075/31/12/007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024624307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cplett.2012.03.050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036498894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00214-015-1705-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041991115", 
          "https://doi.org/10.1007/s00214-015-1705-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00214-015-1705-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041991115", 
          "https://doi.org/10.1007/s00214-015-1705-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00186448", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042199047", 
          "https://doi.org/10.1007/bf00186448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00186448", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042199047", 
          "https://doi.org/10.1007/bf00186448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4820418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047197308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4820419", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049883268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1318767", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057693989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1673854", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057750314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1673855", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057750315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1846655", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057827264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1862237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057829031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2137322", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057839070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2222353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057848973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2222360", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057848979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3352564", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057940201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3553558", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057972961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3693765", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058002507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.449481", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058027500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.465765", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058043773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.466658", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058044664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.478959", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058068580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4837179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058086859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.101.1730", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060417112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.101.1730", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060417112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.33.1480", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060474241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.33.1480", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060474241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.48.3561", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060487866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.48.3561", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060487866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.56.290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060493071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.56.290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060493071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.57.2527", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060493586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.57.2527", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060493586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.378", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060819418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.378", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060819418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c7cp03349d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091208586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.5023281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103280100"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "The radial components of the natural orbitals (NOs) pertaining to the 1S+ ground state of the two-electron harmonium atom are found to satisfy homogeneous differential equations at the values of the confinement strength \u03c9 at which the respective correlation factors are given by polynomials. Together with the angular momentum l of the NOs, the degrees of these polynomials determine the orders of the differential equations, eigenvalues of which (arising from well-defined boundary conditions) yield the natural amplitudes. In the case of l=0, analysis of these equations uncovers certain properties of the NOs whereas application of a WKB-like approximation produces asymptotic expressions for both the NOs and the corresponding natural amplitudes that hold when the latter are small negative numbers. Extensive numerical calculations reveal that these expressions remain valid for arbitrary values of \u03c9. The approximate s-type NOs, which are remarkably accurate at sufficiently small radial distances and exhibit universal scaling, differ qualitatively from the eigenfunctions of the core Hamiltonian even at the \u03c9\u2192\u221e limit of vanishing electron correlation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00214-018-2362-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7406573", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1134081", 
        "issn": [
          "1432-881X", 
          "1432-2234"
        ], 
        "name": "Theoretical Chemistry Accounts", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "137"
      }
    ], 
    "name": "Natural orbitals of the ground state of the two-electron harmonium atom", 
    "pagination": "173", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f44b8a7b20e6a01d9c4bbbbb3462665a59d10f67dc31a095e5a452ac7b039b86"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00214-018-2362-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1109809107"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00214-018-2362-5", 
      "https://app.dimensions.ai/details/publication/pub.1109809107"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000610.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00214-018-2362-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00214-018-2362-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00214-018-2362-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00214-018-2362-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00214-018-2362-5'


 

This table displays all metadata directly associated to this object as RDF triples.

158 TRIPLES      21 PREDICATES      58 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00214-018-2362-5 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N08f6729404c443f492fe76317c598b71
4 schema:citation sg:pub.10.1007/bf00186448
5 sg:pub.10.1007/s00214-015-1705-8
6 https://doi.org/10.1002/qua.22021
7 https://doi.org/10.1016/j.cplett.2012.03.050
8 https://doi.org/10.1039/c7cp03349d
9 https://doi.org/10.1063/1.1318767
10 https://doi.org/10.1063/1.1673854
11 https://doi.org/10.1063/1.1673855
12 https://doi.org/10.1063/1.1846655
13 https://doi.org/10.1063/1.1862237
14 https://doi.org/10.1063/1.2137322
15 https://doi.org/10.1063/1.2222353
16 https://doi.org/10.1063/1.2222360
17 https://doi.org/10.1063/1.3352564
18 https://doi.org/10.1063/1.3553558
19 https://doi.org/10.1063/1.3693765
20 https://doi.org/10.1063/1.449481
21 https://doi.org/10.1063/1.465765
22 https://doi.org/10.1063/1.466658
23 https://doi.org/10.1063/1.478959
24 https://doi.org/10.1063/1.4820418
25 https://doi.org/10.1063/1.4820419
26 https://doi.org/10.1063/1.4837179
27 https://doi.org/10.1063/1.5023281
28 https://doi.org/10.1088/0953-4075/31/12/007
29 https://doi.org/10.1103/physrev.101.1730
30 https://doi.org/10.1103/physreva.33.1480
31 https://doi.org/10.1103/physreva.48.3561
32 https://doi.org/10.1103/physreva.56.290
33 https://doi.org/10.1103/physreva.57.2527
34 https://doi.org/10.1103/physrevlett.82.378
35 schema:datePublished 2018-12
36 schema:datePublishedReg 2018-12-01
37 schema:description The radial components of the natural orbitals (NOs) pertaining to the 1S+ ground state of the two-electron harmonium atom are found to satisfy homogeneous differential equations at the values of the confinement strength ω at which the respective correlation factors are given by polynomials. Together with the angular momentum l of the NOs, the degrees of these polynomials determine the orders of the differential equations, eigenvalues of which (arising from well-defined boundary conditions) yield the natural amplitudes. In the case of l=0, analysis of these equations uncovers certain properties of the NOs whereas application of a WKB-like approximation produces asymptotic expressions for both the NOs and the corresponding natural amplitudes that hold when the latter are small negative numbers. Extensive numerical calculations reveal that these expressions remain valid for arbitrary values of ω. The approximate s-type NOs, which are remarkably accurate at sufficiently small radial distances and exhibit universal scaling, differ qualitatively from the eigenfunctions of the core Hamiltonian even at the ω→∞ limit of vanishing electron correlation.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree false
41 schema:isPartOf N09996b43fc8b4d1da7ed94c1b7ce1e22
42 Ne3f6a1f76e9941d4bc463bdb542648ed
43 sg:journal.1134081
44 schema:name Natural orbitals of the ground state of the two-electron harmonium atom
45 schema:pagination 173
46 schema:productId N15a861ba1d7f4227b909d5270a59b8c5
47 N711021a129b149518309973dc703df5d
48 Nf4d80783503f4e38a57bb7826499afc7
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109809107
50 https://doi.org/10.1007/s00214-018-2362-5
51 schema:sdDatePublished 2019-04-10T17:45
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher N1c205fbac97d4444a69bbd595b5666cb
54 schema:url https://link.springer.com/10.1007%2Fs00214-018-2362-5
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N08f6729404c443f492fe76317c598b71 rdf:first Nb251d2aefdf7464d8ab5b2e02faf77e5
59 rdf:rest rdf:nil
60 N09996b43fc8b4d1da7ed94c1b7ce1e22 schema:volumeNumber 137
61 rdf:type schema:PublicationVolume
62 N15a861ba1d7f4227b909d5270a59b8c5 schema:name readcube_id
63 schema:value f44b8a7b20e6a01d9c4bbbbb3462665a59d10f67dc31a095e5a452ac7b039b86
64 rdf:type schema:PropertyValue
65 N1c205fbac97d4444a69bbd595b5666cb schema:name Springer Nature - SN SciGraph project
66 rdf:type schema:Organization
67 N711021a129b149518309973dc703df5d schema:name dimensions_id
68 schema:value pub.1109809107
69 rdf:type schema:PropertyValue
70 Nb251d2aefdf7464d8ab5b2e02faf77e5 schema:affiliation https://www.grid.ac/institutes/grid.419560.f
71 schema:familyName Cioslowski
72 schema:givenName Jerzy
73 rdf:type schema:Person
74 Ne3f6a1f76e9941d4bc463bdb542648ed schema:issueNumber 12
75 rdf:type schema:PublicationIssue
76 Nf4d80783503f4e38a57bb7826499afc7 schema:name doi
77 schema:value 10.1007/s00214-018-2362-5
78 rdf:type schema:PropertyValue
79 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
80 schema:name Mathematical Sciences
81 rdf:type schema:DefinedTerm
82 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
83 schema:name Numerical and Computational Mathematics
84 rdf:type schema:DefinedTerm
85 sg:grant.7406573 http://pending.schema.org/fundedItem sg:pub.10.1007/s00214-018-2362-5
86 rdf:type schema:MonetaryGrant
87 sg:journal.1134081 schema:issn 1432-2234
88 1432-881X
89 schema:name Theoretical Chemistry Accounts
90 rdf:type schema:Periodical
91 sg:pub.10.1007/bf00186448 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042199047
92 https://doi.org/10.1007/bf00186448
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/s00214-015-1705-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041991115
95 https://doi.org/10.1007/s00214-015-1705-8
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1002/qua.22021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000012620
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/j.cplett.2012.03.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036498894
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1039/c7cp03349d schema:sameAs https://app.dimensions.ai/details/publication/pub.1091208586
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1063/1.1318767 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057693989
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1063/1.1673854 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057750314
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1063/1.1673855 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057750315
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1063/1.1846655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057827264
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1063/1.1862237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057829031
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1063/1.2137322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057839070
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1063/1.2222353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057848973
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1063/1.2222360 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057848979
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1063/1.3352564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057940201
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1063/1.3553558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057972961
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1063/1.3693765 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058002507
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1063/1.449481 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058027500
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1063/1.465765 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058043773
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1063/1.466658 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058044664
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1063/1.478959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058068580
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1063/1.4820418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047197308
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1063/1.4820419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049883268
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1063/1.4837179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058086859
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1063/1.5023281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103280100
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1088/0953-4075/31/12/007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024624307
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1103/physrev.101.1730 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060417112
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1103/physreva.33.1480 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060474241
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1103/physreva.48.3561 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060487866
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1103/physreva.56.290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060493071
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1103/physreva.57.2527 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060493586
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1103/physrevlett.82.378 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060819418
154 rdf:type schema:CreativeWork
155 https://www.grid.ac/institutes/grid.419560.f schema:alternateName Max Planck Institute for the Physics of Complex Systems
156 schema:name Institute of Physics, University of Szczecin, Wielkopolska 15, 70-451, Szczecin, Poland
157 Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Str. 38, D-01187, Dresden, Germany
158 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...