Natural orbitals of the ground state of the two-electron harmonium atom View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

Jerzy Cioslowski

ABSTRACT

The radial components of the natural orbitals (NOs) pertaining to the 1S+ ground state of the two-electron harmonium atom are found to satisfy homogeneous differential equations at the values of the confinement strength ω at which the respective correlation factors are given by polynomials. Together with the angular momentum l of the NOs, the degrees of these polynomials determine the orders of the differential equations, eigenvalues of which (arising from well-defined boundary conditions) yield the natural amplitudes. In the case of l=0, analysis of these equations uncovers certain properties of the NOs whereas application of a WKB-like approximation produces asymptotic expressions for both the NOs and the corresponding natural amplitudes that hold when the latter are small negative numbers. Extensive numerical calculations reveal that these expressions remain valid for arbitrary values of ω. The approximate s-type NOs, which are remarkably accurate at sufficiently small radial distances and exhibit universal scaling, differ qualitatively from the eigenfunctions of the core Hamiltonian even at the ω→∞ limit of vanishing electron correlation. More... »

PAGES

173

References to SciGraph publications

  • 2015-09. Partial-wave decomposition of the ground-state wavefunction of the two-electron harmonium atom in THEORETICAL CHEMISTRY ACCOUNTS
  • 1996-12. The electron correlation cusp in THEORETICAL CHEMISTRY ACCOUNTS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00214-018-2362-5

    DOI

    http://dx.doi.org/10.1007/s00214-018-2362-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1109809107


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Numerical and Computational Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Max Planck Institute for the Physics of Complex Systems", 
              "id": "https://www.grid.ac/institutes/grid.419560.f", 
              "name": [
                "Institute of Physics, University of Szczecin, Wielkopolska 15, 70-451, Szczecin, Poland", 
                "Max-Planck-Institut f\u00fcr Physik komplexer Systeme, N\u00f6thnitzer Str.\u00a038, D-01187, Dresden, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cioslowski", 
            "givenName": "Jerzy", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1002/qua.22021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000012620"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/qua.22021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000012620"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0953-4075/31/12/007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024624307"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cplett.2012.03.050", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036498894"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00214-015-1705-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041991115", 
              "https://doi.org/10.1007/s00214-015-1705-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00214-015-1705-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041991115", 
              "https://doi.org/10.1007/s00214-015-1705-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00186448", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042199047", 
              "https://doi.org/10.1007/bf00186448"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00186448", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042199047", 
              "https://doi.org/10.1007/bf00186448"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.4820418", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047197308"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.4820419", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049883268"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1318767", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057693989"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1673854", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057750314"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1673855", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057750315"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1846655", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057827264"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1862237", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057829031"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.2137322", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057839070"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.2222353", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057848973"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.2222360", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057848979"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.3352564", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057940201"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.3553558", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057972961"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.3693765", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058002507"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.449481", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058027500"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.465765", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058043773"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.466658", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058044664"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.478959", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058068580"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.4837179", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058086859"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.101.1730", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060417112"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.101.1730", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060417112"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.33.1480", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060474241"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.33.1480", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060474241"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.48.3561", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060487866"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.48.3561", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060487866"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.56.290", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060493071"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.56.290", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060493071"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.57.2527", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060493586"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.57.2527", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060493586"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.82.378", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060819418"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.82.378", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060819418"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c7cp03349d", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091208586"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.5023281", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103280100"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-12", 
        "datePublishedReg": "2018-12-01", 
        "description": "The radial components of the natural orbitals (NOs) pertaining to the 1S+ ground state of the two-electron harmonium atom are found to satisfy homogeneous differential equations at the values of the confinement strength \u03c9 at which the respective correlation factors are given by polynomials. Together with the angular momentum l of the NOs, the degrees of these polynomials determine the orders of the differential equations, eigenvalues of which (arising from well-defined boundary conditions) yield the natural amplitudes. In the case of l=0, analysis of these equations uncovers certain properties of the NOs whereas application of a WKB-like approximation produces asymptotic expressions for both the NOs and the corresponding natural amplitudes that hold when the latter are small negative numbers. Extensive numerical calculations reveal that these expressions remain valid for arbitrary values of \u03c9. The approximate s-type NOs, which are remarkably accurate at sufficiently small radial distances and exhibit universal scaling, differ qualitatively from the eigenfunctions of the core Hamiltonian even at the \u03c9\u2192\u221e limit of vanishing electron correlation.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00214-018-2362-5", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7406573", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1134081", 
            "issn": [
              "1432-881X", 
              "1432-2234"
            ], 
            "name": "Theoretical Chemistry Accounts", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "12", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "137"
          }
        ], 
        "name": "Natural orbitals of the ground state of the two-electron harmonium atom", 
        "pagination": "173", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "f44b8a7b20e6a01d9c4bbbbb3462665a59d10f67dc31a095e5a452ac7b039b86"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00214-018-2362-5"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1109809107"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00214-018-2362-5", 
          "https://app.dimensions.ai/details/publication/pub.1109809107"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T17:45", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000610.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs00214-018-2362-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00214-018-2362-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00214-018-2362-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00214-018-2362-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00214-018-2362-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    158 TRIPLES      21 PREDICATES      58 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00214-018-2362-5 schema:about anzsrc-for:01
    2 anzsrc-for:0103
    3 schema:author Nd9f54ca1c3654cec8a3e4928c3e48b1f
    4 schema:citation sg:pub.10.1007/bf00186448
    5 sg:pub.10.1007/s00214-015-1705-8
    6 https://doi.org/10.1002/qua.22021
    7 https://doi.org/10.1016/j.cplett.2012.03.050
    8 https://doi.org/10.1039/c7cp03349d
    9 https://doi.org/10.1063/1.1318767
    10 https://doi.org/10.1063/1.1673854
    11 https://doi.org/10.1063/1.1673855
    12 https://doi.org/10.1063/1.1846655
    13 https://doi.org/10.1063/1.1862237
    14 https://doi.org/10.1063/1.2137322
    15 https://doi.org/10.1063/1.2222353
    16 https://doi.org/10.1063/1.2222360
    17 https://doi.org/10.1063/1.3352564
    18 https://doi.org/10.1063/1.3553558
    19 https://doi.org/10.1063/1.3693765
    20 https://doi.org/10.1063/1.449481
    21 https://doi.org/10.1063/1.465765
    22 https://doi.org/10.1063/1.466658
    23 https://doi.org/10.1063/1.478959
    24 https://doi.org/10.1063/1.4820418
    25 https://doi.org/10.1063/1.4820419
    26 https://doi.org/10.1063/1.4837179
    27 https://doi.org/10.1063/1.5023281
    28 https://doi.org/10.1088/0953-4075/31/12/007
    29 https://doi.org/10.1103/physrev.101.1730
    30 https://doi.org/10.1103/physreva.33.1480
    31 https://doi.org/10.1103/physreva.48.3561
    32 https://doi.org/10.1103/physreva.56.290
    33 https://doi.org/10.1103/physreva.57.2527
    34 https://doi.org/10.1103/physrevlett.82.378
    35 schema:datePublished 2018-12
    36 schema:datePublishedReg 2018-12-01
    37 schema:description The radial components of the natural orbitals (NOs) pertaining to the 1S+ ground state of the two-electron harmonium atom are found to satisfy homogeneous differential equations at the values of the confinement strength ω at which the respective correlation factors are given by polynomials. Together with the angular momentum l of the NOs, the degrees of these polynomials determine the orders of the differential equations, eigenvalues of which (arising from well-defined boundary conditions) yield the natural amplitudes. In the case of l=0, analysis of these equations uncovers certain properties of the NOs whereas application of a WKB-like approximation produces asymptotic expressions for both the NOs and the corresponding natural amplitudes that hold when the latter are small negative numbers. Extensive numerical calculations reveal that these expressions remain valid for arbitrary values of ω. The approximate s-type NOs, which are remarkably accurate at sufficiently small radial distances and exhibit universal scaling, differ qualitatively from the eigenfunctions of the core Hamiltonian even at the ω→∞ limit of vanishing electron correlation.
    38 schema:genre research_article
    39 schema:inLanguage en
    40 schema:isAccessibleForFree false
    41 schema:isPartOf N1060dbdc36c645e69aeb99153d6e4d72
    42 Ndf1add3d1fc74feca81fa2efa6f8f0b9
    43 sg:journal.1134081
    44 schema:name Natural orbitals of the ground state of the two-electron harmonium atom
    45 schema:pagination 173
    46 schema:productId N242b8e404a954ce1a4f3d655a7721e15
    47 N56fee6d94157425cb3ca1ba83cff4810
    48 Nfd5c128e74d04917bcb12789436f6c04
    49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109809107
    50 https://doi.org/10.1007/s00214-018-2362-5
    51 schema:sdDatePublished 2019-04-10T17:45
    52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    53 schema:sdPublisher N7ad239b8d905417a9ab2425f97fe36cd
    54 schema:url https://link.springer.com/10.1007%2Fs00214-018-2362-5
    55 sgo:license sg:explorer/license/
    56 sgo:sdDataset articles
    57 rdf:type schema:ScholarlyArticle
    58 N1060dbdc36c645e69aeb99153d6e4d72 schema:issueNumber 12
    59 rdf:type schema:PublicationIssue
    60 N242b8e404a954ce1a4f3d655a7721e15 schema:name dimensions_id
    61 schema:value pub.1109809107
    62 rdf:type schema:PropertyValue
    63 N56fee6d94157425cb3ca1ba83cff4810 schema:name doi
    64 schema:value 10.1007/s00214-018-2362-5
    65 rdf:type schema:PropertyValue
    66 N7ad239b8d905417a9ab2425f97fe36cd schema:name Springer Nature - SN SciGraph project
    67 rdf:type schema:Organization
    68 N97565eb234bc40f0bf35a66974810fcf schema:affiliation https://www.grid.ac/institutes/grid.419560.f
    69 schema:familyName Cioslowski
    70 schema:givenName Jerzy
    71 rdf:type schema:Person
    72 Nd9f54ca1c3654cec8a3e4928c3e48b1f rdf:first N97565eb234bc40f0bf35a66974810fcf
    73 rdf:rest rdf:nil
    74 Ndf1add3d1fc74feca81fa2efa6f8f0b9 schema:volumeNumber 137
    75 rdf:type schema:PublicationVolume
    76 Nfd5c128e74d04917bcb12789436f6c04 schema:name readcube_id
    77 schema:value f44b8a7b20e6a01d9c4bbbbb3462665a59d10f67dc31a095e5a452ac7b039b86
    78 rdf:type schema:PropertyValue
    79 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    80 schema:name Mathematical Sciences
    81 rdf:type schema:DefinedTerm
    82 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
    83 schema:name Numerical and Computational Mathematics
    84 rdf:type schema:DefinedTerm
    85 sg:grant.7406573 http://pending.schema.org/fundedItem sg:pub.10.1007/s00214-018-2362-5
    86 rdf:type schema:MonetaryGrant
    87 sg:journal.1134081 schema:issn 1432-2234
    88 1432-881X
    89 schema:name Theoretical Chemistry Accounts
    90 rdf:type schema:Periodical
    91 sg:pub.10.1007/bf00186448 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042199047
    92 https://doi.org/10.1007/bf00186448
    93 rdf:type schema:CreativeWork
    94 sg:pub.10.1007/s00214-015-1705-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041991115
    95 https://doi.org/10.1007/s00214-015-1705-8
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.1002/qua.22021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000012620
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.1016/j.cplett.2012.03.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036498894
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1039/c7cp03349d schema:sameAs https://app.dimensions.ai/details/publication/pub.1091208586
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1063/1.1318767 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057693989
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1063/1.1673854 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057750314
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1063/1.1673855 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057750315
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1063/1.1846655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057827264
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1063/1.1862237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057829031
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1063/1.2137322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057839070
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1063/1.2222353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057848973
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1063/1.2222360 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057848979
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1063/1.3352564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057940201
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1063/1.3553558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057972961
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1063/1.3693765 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058002507
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1063/1.449481 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058027500
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1063/1.465765 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058043773
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1063/1.466658 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058044664
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1063/1.478959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058068580
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1063/1.4820418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047197308
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1063/1.4820419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049883268
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1063/1.4837179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058086859
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1063/1.5023281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103280100
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1088/0953-4075/31/12/007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024624307
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1103/physrev.101.1730 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060417112
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1103/physreva.33.1480 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060474241
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1103/physreva.48.3561 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060487866
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1103/physreva.56.290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060493071
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1103/physreva.57.2527 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060493586
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1103/physrevlett.82.378 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060819418
    154 rdf:type schema:CreativeWork
    155 https://www.grid.ac/institutes/grid.419560.f schema:alternateName Max Planck Institute for the Physics of Complex Systems
    156 schema:name Institute of Physics, University of Szczecin, Wielkopolska 15, 70-451, Szczecin, Poland
    157 Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Str. 38, D-01187, Dresden, Germany
    158 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...