Enhancing sampling in atomistic simulations of solid-state materials for batteries: a focus on olivine NaFePO4 View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-04

AUTHORS

Bruno Escribano, Ariel Lozano, Tijana Radivojević, Mario Fernández-Pendás, Javier Carrasco, Elena Akhmatskaya

ABSTRACT

The study of ion transport in electrochemically active materials for energy storage systems requires simulations on quantum-, atomistic- and meso-scales. The methods accessing these scales not only have to be effective but also well compatible to provide a full description of the underlying processes. We propose to adapt the Generalized Shadow Hybrid Monte Carlo (GSHMC) method to atomistic simulation of ion intercalation electrode materials for batteries. The method has never been applied to simulations in solid-state chemistry but it has been successfully used for simulation of biological macromolecules, demonstrating better performance and accuracy than can be achieved with the popular molecular dynamics (MD) method. It has been also extended to simulations on meso-scales, making it even more attractive for simulation of battery materials. We combine GSHMC with the dynamical core–shell model to incorporate polarizability into the simulation and apply the new Modified Adaptive Integration Approach, MAIA, which allows for a larger time step due to its excellent conservation properties. Also, we modify the GSHMC method, without losing its performance and accuracy, to reduce the negative effect of introducing a shell mass within a dynamical shell model. The proposed approach has been tested on olivine NaFePO4, which is a promising cathode material for Na-ion batteries. The calculated Na-ion diffusion and structural properties have been compared with the available experimental data and with the results obtained using MD and the original GSHMC method. Based on these tests, we claim that the new technique is advantageous over MD and the conventional GSHMC and can be recommended for studies of other solid-state electrode and electrolyte materials whenever high accuracy and efficient sampling are critical for obtaining tractable simulation results. More... »

PAGES

43

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00214-017-2064-4

DOI

http://dx.doi.org/10.1007/s00214-017-2064-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1084019559


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Basque Center for Applied Mathematics", 
          "id": "https://www.grid.ac/institutes/grid.462072.5", 
          "name": [
            "Basque Center for Applied Mathematics, Alameda de Mazarredo 14, 48009, Bilbao, Bizkaia, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Escribano", 
        "givenName": "Bruno", 
        "id": "sg:person.01110673703.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01110673703.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CIC energigune", 
          "id": "https://www.grid.ac/institutes/grid.424082.8", 
          "name": [
            "Basque Center for Applied Mathematics, Alameda de Mazarredo 14, 48009, Bilbao, Bizkaia, Spain", 
            "CIC EnergiGUNE, Albert Einstein 48, 01510, Mi\u00f1ano, \u00c1lava, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lozano", 
        "givenName": "Ariel", 
        "id": "sg:person.01255270710.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255270710.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Basque Center for Applied Mathematics", 
          "id": "https://www.grid.ac/institutes/grid.462072.5", 
          "name": [
            "Basque Center for Applied Mathematics, Alameda de Mazarredo 14, 48009, Bilbao, Bizkaia, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Radivojevi\u0107", 
        "givenName": "Tijana", 
        "id": "sg:person.01063201762.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01063201762.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Basque Center for Applied Mathematics", 
          "id": "https://www.grid.ac/institutes/grid.462072.5", 
          "name": [
            "Basque Center for Applied Mathematics, Alameda de Mazarredo 14, 48009, Bilbao, Bizkaia, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fern\u00e1ndez-Pend\u00e1s", 
        "givenName": "Mario", 
        "id": "sg:person.01220057226.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01220057226.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CIC energigune", 
          "id": "https://www.grid.ac/institutes/grid.424082.8", 
          "name": [
            "CIC EnergiGUNE, Albert Einstein 48, 01510, Mi\u00f1ano, \u00c1lava, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Carrasco", 
        "givenName": "Javier", 
        "id": "sg:person.01042707275.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01042707275.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ikerbasque", 
          "id": "https://www.grid.ac/institutes/grid.424810.b", 
          "name": [
            "Basque Center for Applied Mathematics, Alameda de Mazarredo 14, 48009, Bilbao, Bizkaia, Spain", 
            "IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013, Bilbao, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Akhmatskaya", 
        "givenName": "Elena", 
        "id": "sg:person.01124273531.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124273531.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0370-2693(87)91197-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001850739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(87)91197-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001850739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/5/8/006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002708837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b901825e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002733365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b901825e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002733365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2014.08.052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003767519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10853-012-6424-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006536883", 
          "https://doi.org/10.1007/s10853-012-6424-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10853-012-6424-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006536883", 
          "https://doi.org/10.1007/s10853-012-6424-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/451652a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007137639", 
          "https://doi.org/10.1038/451652a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c2jm35585j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009009904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/natrevmats.2015.4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010756397", 
          "https://doi.org/10.1038/natrevmats.2015.4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c4cp02356k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013860982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2016.09.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014343445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm201604g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016345214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm201604g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016345214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c2jm33639a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018745031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja3091438", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019126274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c1ee01598b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024398491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.procs.2011.04.146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024460334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c1jm10725a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024874151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/5/8/005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024953835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c4ee03192j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025370564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35104644", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028300488", 
          "https://doi.org/10.1038/35104644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35104644", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028300488", 
          "https://doi.org/10.1038/35104644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/natrevmats.2016.13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029491509", 
          "https://doi.org/10.1038/natrevmats.2016.13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2478/s11533-012-0164-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030803743", 
          "https://doi.org/10.2478/s11533-012-0164-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.70.235121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032739959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.70.235121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032739959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.15669/pnst.2.447", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033763286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2008.01.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034039987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c2nr32758a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038857664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c6cp00762g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042495617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c0ee00029a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044619138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c3cs60199d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044904977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00894-014-2487-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049633543", 
          "https://doi.org/10.1007/s00894-014-2487-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1051487443", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-05018-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051487443", 
          "https://doi.org/10.1007/978-3-662-05018-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-05018-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051487443", 
          "https://doi.org/10.1007/978-3-662-05018-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c4cp01089b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053267003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cr500192f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053454720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm501110v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053749051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ar2002396", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055150126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi300584p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055205161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm101377h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055413799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm101377h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055413799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm402617b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055415642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ct700301q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055425839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ct700301q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055425839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja503622y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055856432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp076712u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056074443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp076712u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056074443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp205057d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056084019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp205057d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056084019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3202384", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057918546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.439486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058017515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.448118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058026138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.112.90", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060421176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.112.90", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060421176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.50.17953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060573414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.50.17953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060573414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.11169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060581262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.11169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060581262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.59.1758", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060591374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.59.1758", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060591374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.76.165435", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060622786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.76.165435", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060622786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.116.135901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060765294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.116.135901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060765294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.3865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.3865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0916010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062857708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/130932740", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062871149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s106482750138318x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062883875"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-04", 
    "datePublishedReg": "2017-04-01", 
    "description": "The study of ion transport in electrochemically active materials for energy storage systems requires simulations on quantum-, atomistic- and meso-scales. The methods accessing these scales not only have to be effective but also well compatible to provide a full description of the underlying processes. We propose to adapt the Generalized Shadow Hybrid Monte Carlo (GSHMC) method to atomistic simulation of ion intercalation electrode materials for batteries. The method has never been applied to simulations in solid-state chemistry but it has been successfully used for simulation of biological macromolecules, demonstrating better performance and accuracy than can be achieved with the popular molecular dynamics (MD) method. It has been also extended to simulations on meso-scales, making it even more attractive for simulation of battery materials. We combine GSHMC with the dynamical core\u2013shell model to incorporate polarizability into the simulation and apply the new Modified Adaptive Integration Approach, MAIA, which allows for a larger time step due to its excellent conservation properties. Also, we modify the GSHMC method, without losing its performance and accuracy, to reduce the negative effect of introducing a shell mass within a dynamical shell model. The proposed approach has been tested on olivine NaFePO4, which is a promising cathode material for Na-ion batteries. The calculated Na-ion diffusion and structural properties have been compared with the available experimental data and with the results obtained using MD and the original GSHMC method. Based on these tests, we claim that the new technique is advantageous over MD and the conventional GSHMC and can be recommended for studies of other solid-state electrode and electrolyte materials whenever high accuracy and efficient sampling are critical for obtaining tractable simulation results.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00214-017-2064-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1134081", 
        "issn": [
          "1432-881X", 
          "1432-2234"
        ], 
        "name": "Theoretical Chemistry Accounts", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "136"
      }
    ], 
    "name": "Enhancing sampling in atomistic simulations of solid-state materials for batteries: a focus on olivine NaFePO4", 
    "pagination": "43", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "dfd33f8c029347bec912ace131c07981436d857ff555ae00b87e653186fa87cd"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00214-017-2064-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1084019559"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00214-017-2064-4", 
      "https://app.dimensions.ai/details/publication/pub.1084019559"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113641_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00214-017-2064-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00214-017-2064-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00214-017-2064-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00214-017-2064-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00214-017-2064-4'


 

This table displays all metadata directly associated to this object as RDF triples.

276 TRIPLES      21 PREDICATES      82 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00214-017-2064-4 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N9c77bb46ec834406bc3a9062a2f87188
4 schema:citation sg:pub.10.1007/978-3-662-05018-7
5 sg:pub.10.1007/s00894-014-2487-y
6 sg:pub.10.1007/s10853-012-6424-0
7 sg:pub.10.1038/35104644
8 sg:pub.10.1038/451652a
9 sg:pub.10.1038/natrevmats.2015.4
10 sg:pub.10.1038/natrevmats.2016.13
11 sg:pub.10.2478/s11533-012-0164-x
12 https://app.dimensions.ai/details/publication/pub.1051487443
13 https://doi.org/10.1016/0370-2693(87)91197-x
14 https://doi.org/10.1016/j.jcp.2008.01.023
15 https://doi.org/10.1016/j.jcp.2014.08.052
16 https://doi.org/10.1016/j.jcp.2016.09.035
17 https://doi.org/10.1016/j.procs.2011.04.146
18 https://doi.org/10.1021/ar2002396
19 https://doi.org/10.1021/bi300584p
20 https://doi.org/10.1021/cm101377h
21 https://doi.org/10.1021/cm201604g
22 https://doi.org/10.1021/cm402617b
23 https://doi.org/10.1021/cm501110v
24 https://doi.org/10.1021/cr500192f
25 https://doi.org/10.1021/ct700301q
26 https://doi.org/10.1021/ja3091438
27 https://doi.org/10.1021/ja503622y
28 https://doi.org/10.1021/jp076712u
29 https://doi.org/10.1021/jp205057d
30 https://doi.org/10.1039/b901825e
31 https://doi.org/10.1039/c0ee00029a
32 https://doi.org/10.1039/c1ee01598b
33 https://doi.org/10.1039/c1jm10725a
34 https://doi.org/10.1039/c2jm33639a
35 https://doi.org/10.1039/c2jm35585j
36 https://doi.org/10.1039/c2nr32758a
37 https://doi.org/10.1039/c3cs60199d
38 https://doi.org/10.1039/c4cp01089b
39 https://doi.org/10.1039/c4cp02356k
40 https://doi.org/10.1039/c4ee03192j
41 https://doi.org/10.1039/c6cp00762g
42 https://doi.org/10.1063/1.3202384
43 https://doi.org/10.1063/1.439486
44 https://doi.org/10.1063/1.448118
45 https://doi.org/10.1088/0953-8984/5/8/005
46 https://doi.org/10.1088/0953-8984/5/8/006
47 https://doi.org/10.1103/physrev.112.90
48 https://doi.org/10.1103/physrevb.50.17953
49 https://doi.org/10.1103/physrevb.54.11169
50 https://doi.org/10.1103/physrevb.59.1758
51 https://doi.org/10.1103/physrevb.70.235121
52 https://doi.org/10.1103/physrevb.76.165435
53 https://doi.org/10.1103/physrevlett.116.135901
54 https://doi.org/10.1103/physrevlett.77.3865
55 https://doi.org/10.1137/0916010
56 https://doi.org/10.1137/130932740
57 https://doi.org/10.1137/s106482750138318x
58 https://doi.org/10.15669/pnst.2.447
59 schema:datePublished 2017-04
60 schema:datePublishedReg 2017-04-01
61 schema:description The study of ion transport in electrochemically active materials for energy storage systems requires simulations on quantum-, atomistic- and meso-scales. The methods accessing these scales not only have to be effective but also well compatible to provide a full description of the underlying processes. We propose to adapt the Generalized Shadow Hybrid Monte Carlo (GSHMC) method to atomistic simulation of ion intercalation electrode materials for batteries. The method has never been applied to simulations in solid-state chemistry but it has been successfully used for simulation of biological macromolecules, demonstrating better performance and accuracy than can be achieved with the popular molecular dynamics (MD) method. It has been also extended to simulations on meso-scales, making it even more attractive for simulation of battery materials. We combine GSHMC with the dynamical core–shell model to incorporate polarizability into the simulation and apply the new Modified Adaptive Integration Approach, MAIA, which allows for a larger time step due to its excellent conservation properties. Also, we modify the GSHMC method, without losing its performance and accuracy, to reduce the negative effect of introducing a shell mass within a dynamical shell model. The proposed approach has been tested on olivine NaFePO4, which is a promising cathode material for Na-ion batteries. The calculated Na-ion diffusion and structural properties have been compared with the available experimental data and with the results obtained using MD and the original GSHMC method. Based on these tests, we claim that the new technique is advantageous over MD and the conventional GSHMC and can be recommended for studies of other solid-state electrode and electrolyte materials whenever high accuracy and efficient sampling are critical for obtaining tractable simulation results.
62 schema:genre research_article
63 schema:inLanguage en
64 schema:isAccessibleForFree true
65 schema:isPartOf N19ff6617f94946dbb53bc291fc66c0a2
66 N6b598e2122f84f829ce676a7800e9421
67 sg:journal.1134081
68 schema:name Enhancing sampling in atomistic simulations of solid-state materials for batteries: a focus on olivine NaFePO4
69 schema:pagination 43
70 schema:productId N9920858ffb9e4fadb09e41c5776dcd6e
71 N9f8882604ec74265ab947958d7f2b365
72 Na6351e87e6dd40a8a95d20ebbd29b5b1
73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084019559
74 https://doi.org/10.1007/s00214-017-2064-4
75 schema:sdDatePublished 2019-04-11T10:29
76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
77 schema:sdPublisher N6e4fbfb6b33d4bbeb8975e5c13d1d98d
78 schema:url https://link.springer.com/10.1007%2Fs00214-017-2064-4
79 sgo:license sg:explorer/license/
80 sgo:sdDataset articles
81 rdf:type schema:ScholarlyArticle
82 N19ff6617f94946dbb53bc291fc66c0a2 schema:volumeNumber 136
83 rdf:type schema:PublicationVolume
84 N1e67d68e04374c32acd547b3031dd199 rdf:first sg:person.01220057226.77
85 rdf:rest N95d70866c58e452a86fcb171a84fd3fb
86 N6b598e2122f84f829ce676a7800e9421 schema:issueNumber 4
87 rdf:type schema:PublicationIssue
88 N6e4fbfb6b33d4bbeb8975e5c13d1d98d schema:name Springer Nature - SN SciGraph project
89 rdf:type schema:Organization
90 N7d588db16cf54d6a8aef14c7957d5f5b rdf:first sg:person.01255270710.41
91 rdf:rest Nbad6dad7a4ea4c1e9ae790244b4dca7a
92 N95d70866c58e452a86fcb171a84fd3fb rdf:first sg:person.01042707275.51
93 rdf:rest Na726625e705349018bfdfc9ae88bd159
94 N9920858ffb9e4fadb09e41c5776dcd6e schema:name doi
95 schema:value 10.1007/s00214-017-2064-4
96 rdf:type schema:PropertyValue
97 N9c77bb46ec834406bc3a9062a2f87188 rdf:first sg:person.01110673703.83
98 rdf:rest N7d588db16cf54d6a8aef14c7957d5f5b
99 N9f8882604ec74265ab947958d7f2b365 schema:name readcube_id
100 schema:value dfd33f8c029347bec912ace131c07981436d857ff555ae00b87e653186fa87cd
101 rdf:type schema:PropertyValue
102 Na6351e87e6dd40a8a95d20ebbd29b5b1 schema:name dimensions_id
103 schema:value pub.1084019559
104 rdf:type schema:PropertyValue
105 Na726625e705349018bfdfc9ae88bd159 rdf:first sg:person.01124273531.07
106 rdf:rest rdf:nil
107 Nbad6dad7a4ea4c1e9ae790244b4dca7a rdf:first sg:person.01063201762.16
108 rdf:rest N1e67d68e04374c32acd547b3031dd199
109 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
110 schema:name Chemical Sciences
111 rdf:type schema:DefinedTerm
112 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
113 schema:name Physical Chemistry (incl. Structural)
114 rdf:type schema:DefinedTerm
115 sg:journal.1134081 schema:issn 1432-2234
116 1432-881X
117 schema:name Theoretical Chemistry Accounts
118 rdf:type schema:Periodical
119 sg:person.01042707275.51 schema:affiliation https://www.grid.ac/institutes/grid.424082.8
120 schema:familyName Carrasco
121 schema:givenName Javier
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01042707275.51
123 rdf:type schema:Person
124 sg:person.01063201762.16 schema:affiliation https://www.grid.ac/institutes/grid.462072.5
125 schema:familyName Radivojević
126 schema:givenName Tijana
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01063201762.16
128 rdf:type schema:Person
129 sg:person.01110673703.83 schema:affiliation https://www.grid.ac/institutes/grid.462072.5
130 schema:familyName Escribano
131 schema:givenName Bruno
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01110673703.83
133 rdf:type schema:Person
134 sg:person.01124273531.07 schema:affiliation https://www.grid.ac/institutes/grid.424810.b
135 schema:familyName Akhmatskaya
136 schema:givenName Elena
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124273531.07
138 rdf:type schema:Person
139 sg:person.01220057226.77 schema:affiliation https://www.grid.ac/institutes/grid.462072.5
140 schema:familyName Fernández-Pendás
141 schema:givenName Mario
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01220057226.77
143 rdf:type schema:Person
144 sg:person.01255270710.41 schema:affiliation https://www.grid.ac/institutes/grid.424082.8
145 schema:familyName Lozano
146 schema:givenName Ariel
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255270710.41
148 rdf:type schema:Person
149 sg:pub.10.1007/978-3-662-05018-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051487443
150 https://doi.org/10.1007/978-3-662-05018-7
151 rdf:type schema:CreativeWork
152 sg:pub.10.1007/s00894-014-2487-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1049633543
153 https://doi.org/10.1007/s00894-014-2487-y
154 rdf:type schema:CreativeWork
155 sg:pub.10.1007/s10853-012-6424-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006536883
156 https://doi.org/10.1007/s10853-012-6424-0
157 rdf:type schema:CreativeWork
158 sg:pub.10.1038/35104644 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028300488
159 https://doi.org/10.1038/35104644
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/451652a schema:sameAs https://app.dimensions.ai/details/publication/pub.1007137639
162 https://doi.org/10.1038/451652a
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/natrevmats.2015.4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010756397
165 https://doi.org/10.1038/natrevmats.2015.4
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/natrevmats.2016.13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029491509
168 https://doi.org/10.1038/natrevmats.2016.13
169 rdf:type schema:CreativeWork
170 sg:pub.10.2478/s11533-012-0164-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1030803743
171 https://doi.org/10.2478/s11533-012-0164-x
172 rdf:type schema:CreativeWork
173 https://app.dimensions.ai/details/publication/pub.1051487443 schema:CreativeWork
174 https://doi.org/10.1016/0370-2693(87)91197-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1001850739
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.jcp.2008.01.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034039987
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.jcp.2014.08.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003767519
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.jcp.2016.09.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014343445
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.procs.2011.04.146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024460334
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1021/ar2002396 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055150126
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1021/bi300584p schema:sameAs https://app.dimensions.ai/details/publication/pub.1055205161
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1021/cm101377h schema:sameAs https://app.dimensions.ai/details/publication/pub.1055413799
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1021/cm201604g schema:sameAs https://app.dimensions.ai/details/publication/pub.1016345214
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1021/cm402617b schema:sameAs https://app.dimensions.ai/details/publication/pub.1055415642
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1021/cm501110v schema:sameAs https://app.dimensions.ai/details/publication/pub.1053749051
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1021/cr500192f schema:sameAs https://app.dimensions.ai/details/publication/pub.1053454720
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1021/ct700301q schema:sameAs https://app.dimensions.ai/details/publication/pub.1055425839
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1021/ja3091438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019126274
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1021/ja503622y schema:sameAs https://app.dimensions.ai/details/publication/pub.1055856432
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1021/jp076712u schema:sameAs https://app.dimensions.ai/details/publication/pub.1056074443
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1021/jp205057d schema:sameAs https://app.dimensions.ai/details/publication/pub.1056084019
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1039/b901825e schema:sameAs https://app.dimensions.ai/details/publication/pub.1002733365
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1039/c0ee00029a schema:sameAs https://app.dimensions.ai/details/publication/pub.1044619138
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1039/c1ee01598b schema:sameAs https://app.dimensions.ai/details/publication/pub.1024398491
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1039/c1jm10725a schema:sameAs https://app.dimensions.ai/details/publication/pub.1024874151
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1039/c2jm33639a schema:sameAs https://app.dimensions.ai/details/publication/pub.1018745031
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1039/c2jm35585j schema:sameAs https://app.dimensions.ai/details/publication/pub.1009009904
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1039/c2nr32758a schema:sameAs https://app.dimensions.ai/details/publication/pub.1038857664
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1039/c3cs60199d schema:sameAs https://app.dimensions.ai/details/publication/pub.1044904977
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1039/c4cp01089b schema:sameAs https://app.dimensions.ai/details/publication/pub.1053267003
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1039/c4cp02356k schema:sameAs https://app.dimensions.ai/details/publication/pub.1013860982
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1039/c4ee03192j schema:sameAs https://app.dimensions.ai/details/publication/pub.1025370564
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1039/c6cp00762g schema:sameAs https://app.dimensions.ai/details/publication/pub.1042495617
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1063/1.3202384 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057918546
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1063/1.439486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058017515
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1063/1.448118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058026138
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1088/0953-8984/5/8/005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024953835
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1088/0953-8984/5/8/006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002708837
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1103/physrev.112.90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060421176
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1103/physrevb.50.17953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060573414
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1103/physrevb.54.11169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060581262
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1103/physrevb.59.1758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060591374
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1103/physrevb.70.235121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032739959
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1103/physrevb.76.165435 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060622786
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1103/physrevlett.116.135901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060765294
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1103/physrevlett.77.3865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060814179
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1137/0916010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062857708
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1137/130932740 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062871149
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1137/s106482750138318x schema:sameAs https://app.dimensions.ai/details/publication/pub.1062883875
263 rdf:type schema:CreativeWork
264 https://doi.org/10.15669/pnst.2.447 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033763286
265 rdf:type schema:CreativeWork
266 https://www.grid.ac/institutes/grid.424082.8 schema:alternateName CIC energigune
267 schema:name Basque Center for Applied Mathematics, Alameda de Mazarredo 14, 48009, Bilbao, Bizkaia, Spain
268 CIC EnergiGUNE, Albert Einstein 48, 01510, Miñano, Álava, Spain
269 rdf:type schema:Organization
270 https://www.grid.ac/institutes/grid.424810.b schema:alternateName Ikerbasque
271 schema:name Basque Center for Applied Mathematics, Alameda de Mazarredo 14, 48009, Bilbao, Bizkaia, Spain
272 IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013, Bilbao, Spain
273 rdf:type schema:Organization
274 https://www.grid.ac/institutes/grid.462072.5 schema:alternateName Basque Center for Applied Mathematics
275 schema:name Basque Center for Applied Mathematics, Alameda de Mazarredo 14, 48009, Bilbao, Bizkaia, Spain
276 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...