Aspects of size extensivity in unitary group adapted multi-reference coupled cluster theories: the role of cumulant decomposition of spin-free reduced ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-07-11

AUTHORS

Rahul Maitra, Debalina Sinha, Sangita Sen, Debashis Mukherjee

ABSTRACT

We present in this paper a comprehensive study of the various aspects of size extensivity of a set of unitary group adapted multi-reference coupled cluster (UGA-MRCC) theories recently developed by us. All these theories utilize a Jeziorski–Monkhorst (JM) inspired spin-free cluster Ansatz of the form |Ψ⟩=∑μΩμ|ϕμ⟩cμ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\varPsi \rangle = \sum\nolimits_\mu \varOmega _\mu |\phi _\mu \rangle c_\mu$$\end{document} with Ωμ={exp(Tμ)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega _\mu =\{\exp ({T_\mu })\}$$\end{document}, where Tμ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_\mu$$\end{document} is expressed in terms of spin-free generators of the unitary group U(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U(n)$$\end{document} for n-orbitals with the associated cluster amplitudes. {...}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{...\}$$\end{document} indicates normal ordering with respect to the common closed shell core\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$core$$\end{document} part, |0⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|0\rangle$$\end{document}, of the model functions, {ϕμ}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\phi _\mu \}$$\end{document} which is taken as the vacuum. We argue and emphasize in the paper that maintaining size extensivity of the associated theories is consequent upon (a) connectivity of the composites, Gμ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_\mu$$\end{document}, containing the Hamiltonian H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H$$\end{document} and the various powers of T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T$$\end{document} connected to it, (b) proving the connectivity of the MRCC equations which involve not only Gμ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_\mu$$\end{document}s but also the associated connected components of the spin-free reduced density matrices (RDMs) obtained via their cumulant decomposition and (c) showing the extensivity of the cluster amplitudes for non-interacting groups of orbitals and eventually of the size-consistency of the theories in the fragmentation limits. While we will discuss the aspect (a) above rather briefly, since this was amply covered in our earlier papers, the aspect (b) and (c), not covered in detail hitherto, will be covered extensively in this paper. The UGA-MRCC theories dealt with in this paper are the spin-free analogs of the state-specific and state-universal MRCC developed and applied by us recently.We will explain the unfolding of the proof of extensivity by analyzing the algebraic structure of the working equations, decomposed into two factors, one containing the composite Gμ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_\mu$$\end{document} that is connected with the products of cumulants arising out of the cumulant decomposition of the RDMs and the second term containing some RDMs which is disconnected from the first and can be factored out and removed. This factorization ultimately leads to a set of connected MRCC equations. Establishing the extensivity and size-consistency of the theories requires careful separation of truly extensive cumulants from the ones which are a measure of spin correlation and are thus connected but not extensive. We have discussed in detail, using diagrams, the factorization procedure and have used suitable example diagrams to amplify the meanings of the various algebraic quantities of any diagram. We conclude the paper by summarizing our findings and commenting on further developments in the future. More... »

PAGES

1522

References to SciGraph publications

  • 1988. Lie Algebraic Approach to the Many-Electron Correlation Problem in MATHEMATICAL FRONTIERS IN COMPUTATIONAL CHEMICAL PHYSICS
  • 1981. The Unitary Group Approach to Bonded Functions in THE UNITARY GROUP FOR THE EVALUATION OF ELECTRONIC ENERGY MATRIX ELEMENTS
  • 1995. A Coupled Cluster Approach to the Electron Correlation Problem Using a Correlated Reference State in RECENT PROGRESS IN MANY-BODY THEORIES
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00214-014-1522-5

    DOI

    http://dx.doi.org/10.1007/s00214-014-1522-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1039489761


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0307", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Theoretical and Computational Chemistry", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Frick Chemistry Laboratory, Department of Chemistry, Princeton University, 08544, Princeton, NJ, USA", 
              "id": "http://www.grid.ac/institutes/grid.16750.35", 
              "name": [
                "Raman Center for Atomic, Molecular and Optical Sciences, Indian Association for the Cultivation of Science, 700 032, Kolkata, India", 
                "Frick Chemistry Laboratory, Department of Chemistry, Princeton University, 08544, Princeton, NJ, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Maitra", 
            "givenName": "Rahul", 
            "id": "sg:person.012227220763.97", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012227220763.97"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Raman Center for Atomic, Molecular and Optical Sciences, Indian Association for the Cultivation of Science, 700 032, Kolkata, India", 
              "id": "http://www.grid.ac/institutes/grid.417929.0", 
              "name": [
                "Raman Center for Atomic, Molecular and Optical Sciences, Indian Association for the Cultivation of Science, 700 032, Kolkata, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sinha", 
            "givenName": "Debalina", 
            "id": "sg:person.01220574225.69", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01220574225.69"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Raman Center for Atomic, Molecular and Optical Sciences, Indian Association for the Cultivation of Science, 700 032, Kolkata, India", 
              "id": "http://www.grid.ac/institutes/grid.417929.0", 
              "name": [
                "Raman Center for Atomic, Molecular and Optical Sciences, Indian Association for the Cultivation of Science, 700 032, Kolkata, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sen", 
            "givenName": "Sangita", 
            "id": "sg:person.01113472273.60", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113472273.60"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Raman Center for Atomic, Molecular and Optical Sciences, Indian Association for the Cultivation of Science, 700 032, Kolkata, India", 
              "id": "http://www.grid.ac/institutes/grid.417929.0", 
              "name": [
                "Raman Center for Atomic, Molecular and Optical Sciences, Indian Association for the Cultivation of Science, 700 032, Kolkata, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mukherjee", 
            "givenName": "Debashis", 
            "id": "sg:person.01045301741.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01045301741.05"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-642-93163-5_18", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021268582", 
              "https://doi.org/10.1007/978-3-642-93163-5_18"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4615-1937-9_12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016340990", 
              "https://doi.org/10.1007/978-1-4615-1937-9_12"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4684-6363-7_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1089813319", 
              "https://doi.org/10.1007/978-1-4684-6363-7_10"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-07-11", 
        "datePublishedReg": "2014-07-11", 
        "description": "We present in this paper a comprehensive study of the various aspects of size extensivity of a set of unitary group adapted multi-reference coupled cluster (UGA-MRCC) theories recently developed by us. All these theories utilize a Jeziorski\u2013Monkhorst (JM) inspired spin-free cluster Ansatz of the form |\u03a8\u27e9=\u2211\u03bc\u03a9\u03bc|\u03d5\u03bc\u27e9c\u03bc\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$|\\varPsi \\rangle = \\sum\\nolimits_\\mu \\varOmega _\\mu |\\phi _\\mu \\rangle c_\\mu$$\\end{document} with \u03a9\u03bc={exp(T\u03bc)}\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\varOmega _\\mu =\\{\\exp ({T_\\mu })\\}$$\\end{document}, where T\u03bc\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$T_\\mu$$\\end{document} is expressed in terms of spin-free generators of the unitary group U(n)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$U(n)$$\\end{document} for n-orbitals with the associated cluster amplitudes. {...}\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\{...\\}$$\\end{document} indicates normal ordering with respect to the common closed shell core\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$core$$\\end{document} part, |0\u27e9\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$|0\\rangle$$\\end{document}, of the model functions, {\u03d5\u03bc}\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\{\\phi _\\mu \\}$$\\end{document} which is taken as the vacuum. We argue and emphasize in the paper that maintaining size extensivity of the associated theories is consequent upon (a) connectivity of the composites, G\u03bc\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$G_\\mu$$\\end{document}, containing the Hamiltonian H\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$H$$\\end{document} and the various powers of T\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$T$$\\end{document} connected to it, (b) proving the connectivity of the MRCC equations which involve not only G\u03bc\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$G_\\mu$$\\end{document}s but also the associated connected components of the spin-free reduced density matrices (RDMs) obtained via their cumulant decomposition and (c) showing the extensivity of the cluster amplitudes for non-interacting groups of orbitals and eventually of the size-consistency of the theories in the fragmentation limits. While we will discuss the aspect (a) above rather briefly, since this was amply covered in our earlier papers, the aspect (b) and (c), not covered in detail hitherto, will be covered extensively in this paper. The UGA-MRCC theories dealt with in this paper are the spin-free analogs of the state-specific and state-universal MRCC developed and applied by us recently.We will explain the unfolding of the proof of extensivity by analyzing the algebraic structure of the working equations, decomposed into two factors, one containing the composite G\u03bc\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$G_\\mu$$\\end{document} that is connected with the products of cumulants arising out of the cumulant decomposition of the RDMs and the second term containing some RDMs which is disconnected from the first and can be factored out and removed. This factorization ultimately leads to a set of connected MRCC equations. Establishing the extensivity and size-consistency of the theories requires careful separation of truly extensive cumulants from the ones which are a measure of spin correlation and are thus connected but not extensive. We have discussed in detail, using diagrams, the factorization procedure and have used suitable example diagrams to amplify the meanings of the various algebraic quantities of any diagram. We conclude the paper by summarizing our findings and commenting on further developments in the future.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00214-014-1522-5", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1134081", 
            "issn": [
              "1432-881X", 
              "1432-2234"
            ], 
            "name": "Theoretical Chemistry Accounts", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "9", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "133"
          }
        ], 
        "keywords": [
          "group", 
          "mRCC", 
          "careful separation", 
          "findings", 
          "factors", 
          "study", 
          "further development", 
          "role", 
          "aspects", 
          "measures", 
          "correlation", 
          "procedure", 
          "amplitude", 
          "connectivity", 
          "function", 
          "analogues", 
          "development", 
          "comprehensive study", 
          "part", 
          "form", 
          "terms", 
          "components", 
          "future", 
          "respect", 
          "hitherto", 
          "products", 
          "one", 
          "detail", 
          "quantity", 
          "proof", 
          "limit", 
          "matrix", 
          "set", 
          "meaning", 
          "separation", 
          "structure", 
          "power", 
          "earlier paper", 
          "paper", 
          "generator", 
          "shell", 
          "unfolding", 
          "second term", 
          "theory", 
          "composites", 
          "model function", 
          "equations", 
          "unitary group", 
          "ordering", 
          "vacuum", 
          "diagram", 
          "extensivity", 
          "connected components", 
          "decomposition", 
          "factorization", 
          "normal ordering", 
          "orbitals", 
          "cluster amplitudes", 
          "cumulants", 
          "density matrix", 
          "cluster theory", 
          "ansatz", 
          "closed shell", 
          "reduced density matrices", 
          "non-interacting groups", 
          "detail hitherto", 
          "algebraic structure", 
          "spin correlations", 
          "size extensivity", 
          "Jeziorski-Monkhorst", 
          "spin-free cluster Ansatz", 
          "cluster ansatz", 
          "spin-free generators", 
          "associated cluster amplitudes", 
          "common closed shell", 
          "MRCC equations", 
          "spin-free reduced density matrices", 
          "cumulant decomposition", 
          "fragmentation limits", 
          "UGA-MRCC theories", 
          "spin-free analogs", 
          "state-universal MRCC", 
          "proof of extensivity", 
          "products of cumulants", 
          "connected MRCC equations", 
          "extensive cumulants", 
          "factorization procedure", 
          "suitable example diagrams", 
          "example diagrams", 
          "algebraic quantities"
        ], 
        "name": "Aspects of size extensivity in unitary group adapted multi-reference coupled cluster theories: the role of cumulant decomposition of spin-free reduced density matrices", 
        "pagination": "1522", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1039489761"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00214-014-1522-5"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00214-014-1522-5", 
          "https://app.dimensions.ai/details/publication/pub.1039489761"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:31", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_620.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00214-014-1522-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00214-014-1522-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00214-014-1522-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00214-014-1522-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00214-014-1522-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    185 TRIPLES      22 PREDICATES      118 URIs      107 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00214-014-1522-5 schema:about anzsrc-for:03
    2 anzsrc-for:0307
    3 schema:author Nbb8587d134f64600ab4ef1e203450dfd
    4 schema:citation sg:pub.10.1007/978-1-4615-1937-9_12
    5 sg:pub.10.1007/978-1-4684-6363-7_10
    6 sg:pub.10.1007/978-3-642-93163-5_18
    7 schema:datePublished 2014-07-11
    8 schema:datePublishedReg 2014-07-11
    9 schema:description We present in this paper a comprehensive study of the various aspects of size extensivity of a set of unitary group adapted multi-reference coupled cluster (UGA-MRCC) theories recently developed by us. All these theories utilize a Jeziorski–Monkhorst (JM) inspired spin-free cluster Ansatz of the form |Ψ⟩=∑μΩμ|ϕμ⟩cμ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\varPsi \rangle = \sum\nolimits_\mu \varOmega _\mu |\phi _\mu \rangle c_\mu$$\end{document} with Ωμ={exp(Tμ)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega _\mu =\{\exp ({T_\mu })\}$$\end{document}, where Tμ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_\mu$$\end{document} is expressed in terms of spin-free generators of the unitary group U(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U(n)$$\end{document} for n-orbitals with the associated cluster amplitudes. {...}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{...\}$$\end{document} indicates normal ordering with respect to the common closed shell core\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$core$$\end{document} part, |0⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|0\rangle$$\end{document}, of the model functions, {ϕμ}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\phi _\mu \}$$\end{document} which is taken as the vacuum. We argue and emphasize in the paper that maintaining size extensivity of the associated theories is consequent upon (a) connectivity of the composites, Gμ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_\mu$$\end{document}, containing the Hamiltonian H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H$$\end{document} and the various powers of T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T$$\end{document} connected to it, (b) proving the connectivity of the MRCC equations which involve not only Gμ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_\mu$$\end{document}s but also the associated connected components of the spin-free reduced density matrices (RDMs) obtained via their cumulant decomposition and (c) showing the extensivity of the cluster amplitudes for non-interacting groups of orbitals and eventually of the size-consistency of the theories in the fragmentation limits. While we will discuss the aspect (a) above rather briefly, since this was amply covered in our earlier papers, the aspect (b) and (c), not covered in detail hitherto, will be covered extensively in this paper. The UGA-MRCC theories dealt with in this paper are the spin-free analogs of the state-specific and state-universal MRCC developed and applied by us recently.We will explain the unfolding of the proof of extensivity by analyzing the algebraic structure of the working equations, decomposed into two factors, one containing the composite Gμ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_\mu$$\end{document} that is connected with the products of cumulants arising out of the cumulant decomposition of the RDMs and the second term containing some RDMs which is disconnected from the first and can be factored out and removed. This factorization ultimately leads to a set of connected MRCC equations. Establishing the extensivity and size-consistency of the theories requires careful separation of truly extensive cumulants from the ones which are a measure of spin correlation and are thus connected but not extensive. We have discussed in detail, using diagrams, the factorization procedure and have used suitable example diagrams to amplify the meanings of the various algebraic quantities of any diagram. We conclude the paper by summarizing our findings and commenting on further developments in the future.
    10 schema:genre article
    11 schema:inLanguage en
    12 schema:isAccessibleForFree false
    13 schema:isPartOf N16d3c125f63c445fa3c7b5b7beb3b44d
    14 N73a0158185d54c439807fc591563ae74
    15 sg:journal.1134081
    16 schema:keywords Jeziorski-Monkhorst
    17 MRCC equations
    18 UGA-MRCC theories
    19 algebraic quantities
    20 algebraic structure
    21 amplitude
    22 analogues
    23 ansatz
    24 aspects
    25 associated cluster amplitudes
    26 careful separation
    27 closed shell
    28 cluster amplitudes
    29 cluster ansatz
    30 cluster theory
    31 common closed shell
    32 components
    33 composites
    34 comprehensive study
    35 connected MRCC equations
    36 connected components
    37 connectivity
    38 correlation
    39 cumulant decomposition
    40 cumulants
    41 decomposition
    42 density matrix
    43 detail
    44 detail hitherto
    45 development
    46 diagram
    47 earlier paper
    48 equations
    49 example diagrams
    50 extensive cumulants
    51 extensivity
    52 factorization
    53 factorization procedure
    54 factors
    55 findings
    56 form
    57 fragmentation limits
    58 function
    59 further development
    60 future
    61 generator
    62 group
    63 hitherto
    64 limit
    65 mRCC
    66 matrix
    67 meaning
    68 measures
    69 model function
    70 non-interacting groups
    71 normal ordering
    72 one
    73 orbitals
    74 ordering
    75 paper
    76 part
    77 power
    78 procedure
    79 products
    80 products of cumulants
    81 proof
    82 proof of extensivity
    83 quantity
    84 reduced density matrices
    85 respect
    86 role
    87 second term
    88 separation
    89 set
    90 shell
    91 size extensivity
    92 spin correlations
    93 spin-free analogs
    94 spin-free cluster Ansatz
    95 spin-free generators
    96 spin-free reduced density matrices
    97 state-universal MRCC
    98 structure
    99 study
    100 suitable example diagrams
    101 terms
    102 theory
    103 unfolding
    104 unitary group
    105 vacuum
    106 schema:name Aspects of size extensivity in unitary group adapted multi-reference coupled cluster theories: the role of cumulant decomposition of spin-free reduced density matrices
    107 schema:pagination 1522
    108 schema:productId N69429fce55e5481a8bc48d916208ff6b
    109 N6c5896c1e16642c48d17ea873a87501e
    110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039489761
    111 https://doi.org/10.1007/s00214-014-1522-5
    112 schema:sdDatePublished 2021-12-01T19:31
    113 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    114 schema:sdPublisher N7ba03e78c27d4249b93697bb101d364d
    115 schema:url https://doi.org/10.1007/s00214-014-1522-5
    116 sgo:license sg:explorer/license/
    117 sgo:sdDataset articles
    118 rdf:type schema:ScholarlyArticle
    119 N16d3c125f63c445fa3c7b5b7beb3b44d schema:issueNumber 9
    120 rdf:type schema:PublicationIssue
    121 N678b6407fd3a4e7a87399b439fcd37f8 rdf:first sg:person.01113472273.60
    122 rdf:rest Ncad3a956859e4fb3bbec84ab1aa59bb6
    123 N69429fce55e5481a8bc48d916208ff6b schema:name dimensions_id
    124 schema:value pub.1039489761
    125 rdf:type schema:PropertyValue
    126 N6c5896c1e16642c48d17ea873a87501e schema:name doi
    127 schema:value 10.1007/s00214-014-1522-5
    128 rdf:type schema:PropertyValue
    129 N73a0158185d54c439807fc591563ae74 schema:volumeNumber 133
    130 rdf:type schema:PublicationVolume
    131 N7ba03e78c27d4249b93697bb101d364d schema:name Springer Nature - SN SciGraph project
    132 rdf:type schema:Organization
    133 N9737df07303a4f5388dc9dbb677bffb2 rdf:first sg:person.01220574225.69
    134 rdf:rest N678b6407fd3a4e7a87399b439fcd37f8
    135 Nbb8587d134f64600ab4ef1e203450dfd rdf:first sg:person.012227220763.97
    136 rdf:rest N9737df07303a4f5388dc9dbb677bffb2
    137 Ncad3a956859e4fb3bbec84ab1aa59bb6 rdf:first sg:person.01045301741.05
    138 rdf:rest rdf:nil
    139 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    140 schema:name Chemical Sciences
    141 rdf:type schema:DefinedTerm
    142 anzsrc-for:0307 schema:inDefinedTermSet anzsrc-for:
    143 schema:name Theoretical and Computational Chemistry
    144 rdf:type schema:DefinedTerm
    145 sg:journal.1134081 schema:issn 1432-2234
    146 1432-881X
    147 schema:name Theoretical Chemistry Accounts
    148 schema:publisher Springer Nature
    149 rdf:type schema:Periodical
    150 sg:person.01045301741.05 schema:affiliation grid-institutes:grid.417929.0
    151 schema:familyName Mukherjee
    152 schema:givenName Debashis
    153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01045301741.05
    154 rdf:type schema:Person
    155 sg:person.01113472273.60 schema:affiliation grid-institutes:grid.417929.0
    156 schema:familyName Sen
    157 schema:givenName Sangita
    158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113472273.60
    159 rdf:type schema:Person
    160 sg:person.01220574225.69 schema:affiliation grid-institutes:grid.417929.0
    161 schema:familyName Sinha
    162 schema:givenName Debalina
    163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01220574225.69
    164 rdf:type schema:Person
    165 sg:person.012227220763.97 schema:affiliation grid-institutes:grid.16750.35
    166 schema:familyName Maitra
    167 schema:givenName Rahul
    168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012227220763.97
    169 rdf:type schema:Person
    170 sg:pub.10.1007/978-1-4615-1937-9_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016340990
    171 https://doi.org/10.1007/978-1-4615-1937-9_12
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1007/978-1-4684-6363-7_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089813319
    174 https://doi.org/10.1007/978-1-4684-6363-7_10
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1007/978-3-642-93163-5_18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021268582
    177 https://doi.org/10.1007/978-3-642-93163-5_18
    178 rdf:type schema:CreativeWork
    179 grid-institutes:grid.16750.35 schema:alternateName Frick Chemistry Laboratory, Department of Chemistry, Princeton University, 08544, Princeton, NJ, USA
    180 schema:name Frick Chemistry Laboratory, Department of Chemistry, Princeton University, 08544, Princeton, NJ, USA
    181 Raman Center for Atomic, Molecular and Optical Sciences, Indian Association for the Cultivation of Science, 700 032, Kolkata, India
    182 rdf:type schema:Organization
    183 grid-institutes:grid.417929.0 schema:alternateName Raman Center for Atomic, Molecular and Optical Sciences, Indian Association for the Cultivation of Science, 700 032, Kolkata, India
    184 schema:name Raman Center for Atomic, Molecular and Optical Sciences, Indian Association for the Cultivation of Science, 700 032, Kolkata, India
    185 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...