Mössbauer spectroscopy for heavy elements: a relativistic benchmark study of mercury View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-03-11

AUTHORS

Stefan Knecht, Samuel Fux, Robert van Meer, Lucas Visscher, Markus Reiher, Trond Saue

ABSTRACT

The electrostatic contribution to the Mössbauer isomer shift of mercury for the series HgFn (n = 1, 2, 4) with respect to the neutral atom has been investigated in the framework of four- and two-component relativistic theory. Replacing the integration of the electron density over the nuclear volume by the contact density (that is, the electron density at the nucleus) leads to a 10% overestimation of the isomer shift. The systematic nature of this error suggests that it can be incorporated into a correction factor, thus justifying the use of the contact density for the calculation of the Mössbauer isomer shift. The performance of a large selection of density functionals for the calculation of contact densities has been assessed by comparing with finite-field four-component relativistic coupled-cluster with single and double and perturbative triple excitations [CCSD(T)] calculations. For the absolute contact density of the mercury atom, the Density Functional Theory (DFT) calculations are in error by about 0.5%, a result that must be judged against the observation that the change in contact density along the series HgFn (n = 1, 2, 4), relevant for the isomer shift, is on the order of 50 ppm with respect to absolute densities. Contrary to previous studies of the 57Fe isomer shift (F Neese, Inorg Chim Acta 332:181, 2002), for mercury, DFT is not able to reproduce the trends in the isomer shift provided by reference data, in our case CCSD(T) calculations, notably the non-monotonous decrease in the contact density along the series HgFn (n = 1, 2, 4). Projection analysis shows the expected reduction of the 6s1/2 population at the mercury center with an increasing number of ligands, but also brings into light an opposing effect, namely the increasing polarization of the 6s1/2 orbital due to increasing effective charge of the mercury atom, which explains the non-monotonous behavior of the contact density along the series. The same analysis shows increasing covalent contributions to bonding along the series with the effective charge of the mercury atom reaching a maximum of around +2 for HgF4 at the DFT level, far from the formal charge +4 suggested by the oxidation state of this recently observed species. Whereas the geometries for the linear HgF2 and square-planar HgF4 molecules were taken from previous computational studies, we optimized the equilibrium distance of HgF at the four-component Fock-space CCSD/aug-cc-pVQZ level, giving spectroscopic constants re = 2.007 Å and ωe = 513.5 cm−1. More... »

PAGES

631-650

References to SciGraph publications

  • 2007-07-12. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals in THEORETICAL CHEMISTRY ACCOUNTS
  • 1985-12. Electric hyperfine interaction in199Hg fluorides in HYPERFINE INTERACTIONS
  • 1967-12. Nonrelativistic particles and wave equations in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1958-04. Kernresonanzfluoreszenz von Gammastrahlung in Ir191 in ZEITSCHRIFT FÜR PHYSIK A HADRONS AND NUCLEI
  • 2004-11-16. Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the 5d elements Hf–Hg in THEORETICAL CHEMISTRY ACCOUNTS
  • 1979-09. 199Hg Mössbauer measurements on mercury alloys and Hg-fluorides in ZEITSCHRIFT FÜR PHYSIK A HADRONS AND NUCLEI
  • 2001-07. Molecular integrals by numerical quadrature. I. Radial integration in THEORETICAL CHEMISTRY ACCOUNTS
  • 1997-12. Approximate molecular relativistic Dirac-Coulomb calculations using a simple Coulombic correction in THEORETICAL CHEMISTRY ACCOUNTS
  • 1971-04. Mössbaueruntersuchungen an195Pt und201Hg in ZEITSCHRIFT FÜR PHYSIK A HADRONS AND NUCLEI
  • 1982-06. Gold and mössbauer spectroscopy in GOLD BULLETIN
  • 2006-01-14. Douglas–Kroll–Hess Theory: a relativistic electrons-only theory for chemistry in THEORETICAL CHEMISTRY ACCOUNTS
  • 2009-12-20. Revised relativistic basis sets for the 5d elements Hf–Hg in THEORETICAL CHEMISTRY ACCOUNTS
  • 1958-01. Kernresonanzabsorption von Gammastrahlung in Ir191 in THE SCIENCE OF NATURE
  • 2003. Four-Component Electronic Structure Methods for Molecules in THEORETICAL CHEMISTRY AND PHYSICS OF HEAVY AND SUPERHEAVY ELEMENTS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00214-011-0911-2

    DOI

    http://dx.doi.org/10.1007/s00214-011-0911-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1025289175


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0307", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Theoretical and Computational Chemistry", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute de Chimie de Strasbourg, CNRS et Universit\u00e9 de Strasbourg, Laboratoire de Chimie Quantique, 4 rue Blaise Pascal, 67070, Strasbourg, France", 
              "id": "http://www.grid.ac/institutes/grid.11843.3f", 
              "name": [
                "Institute de Chimie de Strasbourg, CNRS et Universit\u00e9 de Strasbourg, Laboratoire de Chimie Quantique, 4 rue Blaise Pascal, 67070, Strasbourg, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Knecht", 
            "givenName": "Stefan", 
            "id": "sg:person.015167017300.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015167017300.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "ETH Zurich, Laboratorium f\u00fcr Physikalische Chemie, Wolfgang-Pauli-Strasse 10, 8093, Zurich, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5801.c", 
              "name": [
                "ETH Zurich, Laboratorium f\u00fcr Physikalische Chemie, Wolfgang-Pauli-Strasse 10, 8093, Zurich, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fux", 
            "givenName": "Samuel", 
            "id": "sg:person.012410277504.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012410277504.35"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Amsterdam Center for Multiscale Modeling, VU University Amsterdam, De Boelelaan 1083, 1081, HV Amsterdam, The Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.12380.38", 
              "name": [
                "Amsterdam Center for Multiscale Modeling, VU University Amsterdam, De Boelelaan 1083, 1081, HV Amsterdam, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "van Meer", 
            "givenName": "Robert", 
            "id": "sg:person.01201670562.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201670562.48"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Amsterdam Center for Multiscale Modeling, VU University Amsterdam, De Boelelaan 1083, 1081, HV Amsterdam, The Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.12380.38", 
              "name": [
                "Amsterdam Center for Multiscale Modeling, VU University Amsterdam, De Boelelaan 1083, 1081, HV Amsterdam, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Visscher", 
            "givenName": "Lucas", 
            "id": "sg:person.01126064534.79", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126064534.79"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "ETH Zurich, Laboratorium f\u00fcr Physikalische Chemie, Wolfgang-Pauli-Strasse 10, 8093, Zurich, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5801.c", 
              "name": [
                "ETH Zurich, Laboratorium f\u00fcr Physikalische Chemie, Wolfgang-Pauli-Strasse 10, 8093, Zurich, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Reiher", 
            "givenName": "Markus", 
            "id": "sg:person.01265561117.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265561117.03"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Laboratoire de Chimie et Physique Quantique (CNRS UMR 5626), IRSAMC, Universit\u00e9 Paul Sabatier, 118 Route de Narbonne, 31062, Toulouse cedex, France", 
              "id": "http://www.grid.ac/institutes/grid.494623.e", 
              "name": [
                "Laboratoire de Chimie et Physique Quantique (CNRS UMR 5626), IRSAMC, Universit\u00e9 Paul Sabatier, 118 Route de Narbonne, 31062, Toulouse cedex, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Saue", 
            "givenName": "Trond", 
            "id": "sg:person.0743473635.57", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743473635.57"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01394728", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049633002", 
              "https://doi.org/10.1007/bf01394728"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01344210", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005111974", 
              "https://doi.org/10.1007/bf01344210"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002140050280", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003701187", 
              "https://doi.org/10.1007/s002140050280"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-017-0105-1_6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035864441", 
              "https://doi.org/10.1007/978-94-017-0105-1_6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00214-005-0003-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052676088", 
              "https://doi.org/10.1007/s00214-005-0003-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002140100263", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034624008", 
              "https://doi.org/10.1007/s002140100263"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01435591", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041183127", 
              "https://doi.org/10.1007/bf01435591"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00214-004-0607-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012270095", 
              "https://doi.org/10.1007/s00214-004-0607-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00632050", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034306053", 
              "https://doi.org/10.1007/bf00632050"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00214-007-0310-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024437999", 
              "https://doi.org/10.1007/s00214-007-0310-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00214-009-0717-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014288105", 
              "https://doi.org/10.1007/s00214-009-0717-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02058948", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025623387", 
              "https://doi.org/10.1007/bf02058948"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01646020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006856625", 
              "https://doi.org/10.1007/bf01646020"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf03214607", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043617000", 
              "https://doi.org/10.1007/bf03214607"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2011-03-11", 
        "datePublishedReg": "2011-03-11", 
        "description": "The electrostatic contribution to the M\u00f6ssbauer isomer shift of mercury for the series HgFn (n\u00a0=\u00a01,\u00a02,\u00a04) with respect to the neutral atom has been investigated in the framework of four- and two-component relativistic theory. Replacing the integration of the electron density over the nuclear volume by the contact density (that is, the electron density at the nucleus) leads to a 10% overestimation of the isomer shift. The systematic nature of this error suggests that it can be incorporated into a correction factor, thus justifying the use of the contact density for the calculation of the M\u00f6ssbauer isomer shift. The performance of a large selection of density functionals for the calculation of contact densities has been assessed by comparing with finite-field four-component relativistic coupled-cluster with single and double and perturbative triple excitations [CCSD(T)] calculations. For the absolute contact density of the mercury atom, the Density Functional Theory (DFT) calculations are in error by about 0.5%, a result that must be judged against the observation that the change in contact density along the series HgFn (n\u00a0=\u00a01,\u00a02,\u00a04), relevant for the isomer shift, is on the order of 50\u00a0ppm with respect to absolute densities. Contrary to previous studies of the 57Fe isomer shift (F Neese, Inorg Chim Acta 332:181, 2002), for mercury, DFT is not able to reproduce the trends in the isomer shift provided by reference data, in our case CCSD(T) calculations, notably the non-monotonous decrease in the contact density along the series HgFn (n\u00a0=\u00a01,\u00a02,\u00a04). Projection analysis shows the expected reduction of the 6s1/2 population at the mercury center with an increasing number of ligands, but also brings into light an opposing effect, namely the increasing polarization of the 6s1/2 orbital due to increasing effective charge of the mercury atom, which explains the non-monotonous behavior of the contact density along the series. The same analysis shows increasing covalent contributions to bonding along the series with the effective charge of the mercury atom reaching a maximum of around +2 for HgF4 at the DFT level, far from the formal charge +4 suggested by the oxidation state of this recently observed species. Whereas the geometries for the linear HgF2 and square-planar HgF4 molecules were taken from previous computational studies, we optimized the equilibrium distance of HgF at the four-component Fock-space CCSD/aug-cc-pVQZ level, giving spectroscopic constants re = 2.007 \u00c5 and \u03c9e = 513.5\u00a0cm\u22121.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00214-011-0911-2", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.5228080", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1134081", 
            "issn": [
              "1432-881X", 
              "1432-2234"
            ], 
            "name": "Theoretical Chemistry Accounts", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3-5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "129"
          }
        ], 
        "keywords": [
          "mercury atoms", 
          "isomer shift", 
          "perturbative triple excitations [CCSD(T)] calculations", 
          "effective charge", 
          "M\u00f6ssbauer isomer shifts", 
          "triple excitations calculations", 
          "CCSD/aug", 
          "non-monotonous decrease", 
          "two-component relativistic theory", 
          "contact density", 
          "neutral atoms", 
          "density functional theory calculations", 
          "heavy elements", 
          "excitation calculations", 
          "functional theory calculations", 
          "non-monotonous behavior", 
          "spectroscopic constants", 
          "relativistic theory", 
          "electron density", 
          "equilibrium distance", 
          "density functionals", 
          "theory calculations", 
          "absolute density", 
          "M\u00f6ssbauer spectroscopy", 
          "atoms", 
          "covalent contribution", 
          "mercury centers", 
          "calculations", 
          "DFT level", 
          "electrostatic contribution", 
          "previous computational studies", 
          "density", 
          "charge", 
          "four-component", 
          "oxidation state", 
          "correction factor", 
          "\u03c9e", 
          "shift", 
          "formal charge", 
          "computational study", 
          "polarization", 
          "orbitals", 
          "spectroscopy", 
          "benchmark study", 
          "DFT", 
          "number of ligands", 
          "light", 
          "constants", 
          "mercury", 
          "functionals", 
          "same analysis", 
          "contribution", 
          "nuclear volume", 
          "projection analysis", 
          "maximum", 
          "state", 
          "geometry", 
          "distance", 
          "theory", 
          "reference data", 
          "molecules", 
          "respect", 
          "large selection", 
          "error", 
          "HgF2", 
          "nature", 
          "order", 
          "center", 
          "elements", 
          "ppm", 
          "behavior", 
          "effect", 
          "results", 
          "series", 
          "overestimation", 
          "ligands", 
          "volume", 
          "data", 
          "analysis", 
          "integration", 
          "systematic nature", 
          "cases", 
          "decrease", 
          "performance", 
          "study", 
          "number", 
          "framework", 
          "levels", 
          "changes", 
          "previous studies", 
          "use", 
          "factors", 
          "trends", 
          "reduction", 
          "species", 
          "population", 
          "selection", 
          "HGF", 
          "observations"
        ], 
        "name": "M\u00f6ssbauer spectroscopy for heavy elements: a relativistic benchmark study of mercury", 
        "pagination": "631-650", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1025289175"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00214-011-0911-2"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00214-011-0911-2", 
          "https://app.dimensions.ai/details/publication/pub.1025289175"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-06-01T22:08", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_540.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00214-011-0911-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00214-011-0911-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00214-011-0911-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00214-011-0911-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00214-011-0911-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    259 TRIPLES      22 PREDICATES      138 URIs      116 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00214-011-0911-2 schema:about anzsrc-for:03
    2 anzsrc-for:0307
    3 schema:author N6f79d6d778364574b179b294437d3bfe
    4 schema:citation sg:pub.10.1007/978-94-017-0105-1_6
    5 sg:pub.10.1007/bf00632050
    6 sg:pub.10.1007/bf01344210
    7 sg:pub.10.1007/bf01394728
    8 sg:pub.10.1007/bf01435591
    9 sg:pub.10.1007/bf01646020
    10 sg:pub.10.1007/bf02058948
    11 sg:pub.10.1007/bf03214607
    12 sg:pub.10.1007/s00214-004-0607-y
    13 sg:pub.10.1007/s00214-005-0003-2
    14 sg:pub.10.1007/s00214-007-0310-x
    15 sg:pub.10.1007/s00214-009-0717-7
    16 sg:pub.10.1007/s002140050280
    17 sg:pub.10.1007/s002140100263
    18 schema:datePublished 2011-03-11
    19 schema:datePublishedReg 2011-03-11
    20 schema:description The electrostatic contribution to the Mössbauer isomer shift of mercury for the series HgFn (n = 1, 2, 4) with respect to the neutral atom has been investigated in the framework of four- and two-component relativistic theory. Replacing the integration of the electron density over the nuclear volume by the contact density (that is, the electron density at the nucleus) leads to a 10% overestimation of the isomer shift. The systematic nature of this error suggests that it can be incorporated into a correction factor, thus justifying the use of the contact density for the calculation of the Mössbauer isomer shift. The performance of a large selection of density functionals for the calculation of contact densities has been assessed by comparing with finite-field four-component relativistic coupled-cluster with single and double and perturbative triple excitations [CCSD(T)] calculations. For the absolute contact density of the mercury atom, the Density Functional Theory (DFT) calculations are in error by about 0.5%, a result that must be judged against the observation that the change in contact density along the series HgFn (n = 1, 2, 4), relevant for the isomer shift, is on the order of 50 ppm with respect to absolute densities. Contrary to previous studies of the 57Fe isomer shift (F Neese, Inorg Chim Acta 332:181, 2002), for mercury, DFT is not able to reproduce the trends in the isomer shift provided by reference data, in our case CCSD(T) calculations, notably the non-monotonous decrease in the contact density along the series HgFn (n = 1, 2, 4). Projection analysis shows the expected reduction of the 6s1/2 population at the mercury center with an increasing number of ligands, but also brings into light an opposing effect, namely the increasing polarization of the 6s1/2 orbital due to increasing effective charge of the mercury atom, which explains the non-monotonous behavior of the contact density along the series. The same analysis shows increasing covalent contributions to bonding along the series with the effective charge of the mercury atom reaching a maximum of around +2 for HgF4 at the DFT level, far from the formal charge +4 suggested by the oxidation state of this recently observed species. Whereas the geometries for the linear HgF2 and square-planar HgF4 molecules were taken from previous computational studies, we optimized the equilibrium distance of HgF at the four-component Fock-space CCSD/aug-cc-pVQZ level, giving spectroscopic constants re = 2.007 Å and ωe = 513.5 cm−1.
    21 schema:genre article
    22 schema:inLanguage en
    23 schema:isAccessibleForFree true
    24 schema:isPartOf N7cf634cb060542f2ab8ad02166a8d6cf
    25 N8ea592f1929a4f5095d3bde8c53e65ea
    26 sg:journal.1134081
    27 schema:keywords CCSD/aug
    28 DFT
    29 DFT level
    30 HGF
    31 HgF2
    32 Mössbauer isomer shifts
    33 Mössbauer spectroscopy
    34 absolute density
    35 analysis
    36 atoms
    37 behavior
    38 benchmark study
    39 calculations
    40 cases
    41 center
    42 changes
    43 charge
    44 computational study
    45 constants
    46 contact density
    47 contribution
    48 correction factor
    49 covalent contribution
    50 data
    51 decrease
    52 density
    53 density functional theory calculations
    54 density functionals
    55 distance
    56 effect
    57 effective charge
    58 electron density
    59 electrostatic contribution
    60 elements
    61 equilibrium distance
    62 error
    63 excitation calculations
    64 factors
    65 formal charge
    66 four-component
    67 framework
    68 functional theory calculations
    69 functionals
    70 geometry
    71 heavy elements
    72 integration
    73 isomer shift
    74 large selection
    75 levels
    76 ligands
    77 light
    78 maximum
    79 mercury
    80 mercury atoms
    81 mercury centers
    82 molecules
    83 nature
    84 neutral atoms
    85 non-monotonous behavior
    86 non-monotonous decrease
    87 nuclear volume
    88 number
    89 number of ligands
    90 observations
    91 orbitals
    92 order
    93 overestimation
    94 oxidation state
    95 performance
    96 perturbative triple excitations [CCSD(T)] calculations
    97 polarization
    98 population
    99 ppm
    100 previous computational studies
    101 previous studies
    102 projection analysis
    103 reduction
    104 reference data
    105 relativistic theory
    106 respect
    107 results
    108 same analysis
    109 selection
    110 series
    111 shift
    112 species
    113 spectroscopic constants
    114 spectroscopy
    115 state
    116 study
    117 systematic nature
    118 theory
    119 theory calculations
    120 trends
    121 triple excitations calculations
    122 two-component relativistic theory
    123 use
    124 volume
    125 ωe
    126 schema:name Mössbauer spectroscopy for heavy elements: a relativistic benchmark study of mercury
    127 schema:pagination 631-650
    128 schema:productId N6eed42c36d8a4567826ed85af1a5ea5e
    129 Nf62ac0047913459dae85e5d47ac5f6cc
    130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025289175
    131 https://doi.org/10.1007/s00214-011-0911-2
    132 schema:sdDatePublished 2022-06-01T22:08
    133 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    134 schema:sdPublisher Nba6cd842b4e743aa832e446711c2b122
    135 schema:url https://doi.org/10.1007/s00214-011-0911-2
    136 sgo:license sg:explorer/license/
    137 sgo:sdDataset articles
    138 rdf:type schema:ScholarlyArticle
    139 N21412c9d948343399ecacbf3383b53d8 rdf:first sg:person.01201670562.48
    140 rdf:rest Nce66720a5609466fb82eebc751fb83c9
    141 N6723958bfb2b4eb4b96cac56317a45a6 rdf:first sg:person.012410277504.35
    142 rdf:rest N21412c9d948343399ecacbf3383b53d8
    143 N6eed42c36d8a4567826ed85af1a5ea5e schema:name dimensions_id
    144 schema:value pub.1025289175
    145 rdf:type schema:PropertyValue
    146 N6f79d6d778364574b179b294437d3bfe rdf:first sg:person.015167017300.08
    147 rdf:rest N6723958bfb2b4eb4b96cac56317a45a6
    148 N7cf634cb060542f2ab8ad02166a8d6cf schema:issueNumber 3-5
    149 rdf:type schema:PublicationIssue
    150 N8ea592f1929a4f5095d3bde8c53e65ea schema:volumeNumber 129
    151 rdf:type schema:PublicationVolume
    152 Nb9173e5d79354ce9a56242ec4ec25d31 rdf:first sg:person.0743473635.57
    153 rdf:rest rdf:nil
    154 Nba6cd842b4e743aa832e446711c2b122 schema:name Springer Nature - SN SciGraph project
    155 rdf:type schema:Organization
    156 Nc89030888682438db208c17ffdf4adbb rdf:first sg:person.01265561117.03
    157 rdf:rest Nb9173e5d79354ce9a56242ec4ec25d31
    158 Nce66720a5609466fb82eebc751fb83c9 rdf:first sg:person.01126064534.79
    159 rdf:rest Nc89030888682438db208c17ffdf4adbb
    160 Nf62ac0047913459dae85e5d47ac5f6cc schema:name doi
    161 schema:value 10.1007/s00214-011-0911-2
    162 rdf:type schema:PropertyValue
    163 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    164 schema:name Chemical Sciences
    165 rdf:type schema:DefinedTerm
    166 anzsrc-for:0307 schema:inDefinedTermSet anzsrc-for:
    167 schema:name Theoretical and Computational Chemistry
    168 rdf:type schema:DefinedTerm
    169 sg:grant.5228080 http://pending.schema.org/fundedItem sg:pub.10.1007/s00214-011-0911-2
    170 rdf:type schema:MonetaryGrant
    171 sg:journal.1134081 schema:issn 1432-2234
    172 1432-881X
    173 schema:name Theoretical Chemistry Accounts
    174 schema:publisher Springer Nature
    175 rdf:type schema:Periodical
    176 sg:person.01126064534.79 schema:affiliation grid-institutes:grid.12380.38
    177 schema:familyName Visscher
    178 schema:givenName Lucas
    179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126064534.79
    180 rdf:type schema:Person
    181 sg:person.01201670562.48 schema:affiliation grid-institutes:grid.12380.38
    182 schema:familyName van Meer
    183 schema:givenName Robert
    184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201670562.48
    185 rdf:type schema:Person
    186 sg:person.012410277504.35 schema:affiliation grid-institutes:grid.5801.c
    187 schema:familyName Fux
    188 schema:givenName Samuel
    189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012410277504.35
    190 rdf:type schema:Person
    191 sg:person.01265561117.03 schema:affiliation grid-institutes:grid.5801.c
    192 schema:familyName Reiher
    193 schema:givenName Markus
    194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265561117.03
    195 rdf:type schema:Person
    196 sg:person.015167017300.08 schema:affiliation grid-institutes:grid.11843.3f
    197 schema:familyName Knecht
    198 schema:givenName Stefan
    199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015167017300.08
    200 rdf:type schema:Person
    201 sg:person.0743473635.57 schema:affiliation grid-institutes:grid.494623.e
    202 schema:familyName Saue
    203 schema:givenName Trond
    204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743473635.57
    205 rdf:type schema:Person
    206 sg:pub.10.1007/978-94-017-0105-1_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035864441
    207 https://doi.org/10.1007/978-94-017-0105-1_6
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1007/bf00632050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034306053
    210 https://doi.org/10.1007/bf00632050
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1007/bf01344210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005111974
    213 https://doi.org/10.1007/bf01344210
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1007/bf01394728 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049633002
    216 https://doi.org/10.1007/bf01394728
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1007/bf01435591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041183127
    219 https://doi.org/10.1007/bf01435591
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1007/bf01646020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006856625
    222 https://doi.org/10.1007/bf01646020
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1007/bf02058948 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025623387
    225 https://doi.org/10.1007/bf02058948
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1007/bf03214607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043617000
    228 https://doi.org/10.1007/bf03214607
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1007/s00214-004-0607-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1012270095
    231 https://doi.org/10.1007/s00214-004-0607-y
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1007/s00214-005-0003-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052676088
    234 https://doi.org/10.1007/s00214-005-0003-2
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1007/s00214-007-0310-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1024437999
    237 https://doi.org/10.1007/s00214-007-0310-x
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1007/s00214-009-0717-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014288105
    240 https://doi.org/10.1007/s00214-009-0717-7
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1007/s002140050280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003701187
    243 https://doi.org/10.1007/s002140050280
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1007/s002140100263 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034624008
    246 https://doi.org/10.1007/s002140100263
    247 rdf:type schema:CreativeWork
    248 grid-institutes:grid.11843.3f schema:alternateName Institute de Chimie de Strasbourg, CNRS et Université de Strasbourg, Laboratoire de Chimie Quantique, 4 rue Blaise Pascal, 67070, Strasbourg, France
    249 schema:name Institute de Chimie de Strasbourg, CNRS et Université de Strasbourg, Laboratoire de Chimie Quantique, 4 rue Blaise Pascal, 67070, Strasbourg, France
    250 rdf:type schema:Organization
    251 grid-institutes:grid.12380.38 schema:alternateName Amsterdam Center for Multiscale Modeling, VU University Amsterdam, De Boelelaan 1083, 1081, HV Amsterdam, The Netherlands
    252 schema:name Amsterdam Center for Multiscale Modeling, VU University Amsterdam, De Boelelaan 1083, 1081, HV Amsterdam, The Netherlands
    253 rdf:type schema:Organization
    254 grid-institutes:grid.494623.e schema:alternateName Laboratoire de Chimie et Physique Quantique (CNRS UMR 5626), IRSAMC, Université Paul Sabatier, 118 Route de Narbonne, 31062, Toulouse cedex, France
    255 schema:name Laboratoire de Chimie et Physique Quantique (CNRS UMR 5626), IRSAMC, Université Paul Sabatier, 118 Route de Narbonne, 31062, Toulouse cedex, France
    256 rdf:type schema:Organization
    257 grid-institutes:grid.5801.c schema:alternateName ETH Zurich, Laboratorium für Physikalische Chemie, Wolfgang-Pauli-Strasse 10, 8093, Zurich, Switzerland
    258 schema:name ETH Zurich, Laboratorium für Physikalische Chemie, Wolfgang-Pauli-Strasse 10, 8093, Zurich, Switzerland
    259 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...