Prediction of NMR order parameters in proteins using weighted protein contact-number model View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-08-01

AUTHORS

Shao-Wei Huang, Chien-Hua Shih, Chih-Peng Lin, Jenn-Kang Hwang

ABSTRACT

In the NMR experiment, the protein backbone motion can be described by the N–H order parameters. Though protein dynamics is determined by a complex network of atomic interactions, we show that the order parameter of residues can be determined using a very simple method, the weighted protein contact number model. We computed for each Cα atom the number of neighboring Cα atoms weighted by the inverse distance squared between them. We show that the weighted contact number of each residue is directly related to its order parameter. Despite the simplicity of this model, it performs better than the other method. Since we can compute the order parameters directly from the topological properties (such as protein contact number) of protein structures, our study underscores a very direct link between protein topological structure and its dynamics. More... »

PAGES

197-200

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00214-008-0465-0

DOI

http://dx.doi.org/10.1007/s00214-008-0465-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010342276


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0307", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Theoretical and Computational Chemistry", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Bioinformatics, National Chiao Tung University, 30050, HsinChu, Taiwan, ROC", 
          "id": "http://www.grid.ac/institutes/grid.260539.b", 
          "name": [
            "Institute of Bioinformatics, National Chiao Tung University, 30050, HsinChu, Taiwan, ROC"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Shao-Wei", 
        "id": "sg:person.01247652020.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247652020.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Bioinformatics, National Chiao Tung University, 30050, HsinChu, Taiwan, ROC", 
          "id": "http://www.grid.ac/institutes/grid.260539.b", 
          "name": [
            "Institute of Bioinformatics, National Chiao Tung University, 30050, HsinChu, Taiwan, ROC"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shih", 
        "givenName": "Chien-Hua", 
        "id": "sg:person.01144513217.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144513217.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Bioinformatics, National Chiao Tung University, 30050, HsinChu, Taiwan, ROC", 
          "id": "http://www.grid.ac/institutes/grid.260539.b", 
          "name": [
            "Institute of Bioinformatics, National Chiao Tung University, 30050, HsinChu, Taiwan, ROC"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lin", 
        "givenName": "Chih-Peng", 
        "id": "sg:person.01152613145.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152613145.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Bioinformatics, National Chiao Tung University, 30050, HsinChu, Taiwan, ROC", 
          "id": "http://www.grid.ac/institutes/grid.260539.b", 
          "name": [
            "Institute of Bioinformatics, National Chiao Tung University, 30050, HsinChu, Taiwan, ROC"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hwang", 
        "givenName": "Jenn-Kang", 
        "id": "sg:person.01364151270.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364151270.35"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/253694a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017347854", 
          "https://doi.org/10.1038/253694a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/260679a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035950215", 
          "https://doi.org/10.1038/260679a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nsb0902-646", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020170704", 
          "https://doi.org/10.1038/nsb0902-646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/267585a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050574674", 
          "https://doi.org/10.1038/267585a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-08-01", 
    "datePublishedReg": "2008-08-01", 
    "description": "In the NMR experiment, the protein backbone motion can be described by the N\u2013H order parameters. Though protein dynamics is determined by a complex network of atomic interactions, we show that the order parameter of residues can be determined using a very simple method, the weighted protein contact number model. We computed for each C\u03b1 atom the number of neighboring C\u03b1 atoms weighted by the inverse distance squared between them. We show that the weighted contact number of each residue is directly related to its order parameter. Despite the simplicity of this model, it performs better than the other method. Since we can compute the order parameters directly from the topological properties (such as protein contact number) of protein structures, our study underscores a very direct link between protein topological structure and its dynamics.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00214-008-0465-0", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1134081", 
        "issn": [
          "1432-881X", 
          "1432-2234"
        ], 
        "name": "Theoretical Chemistry Accounts", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "121"
      }
    ], 
    "keywords": [
      "order parameter", 
      "protein backbone motions", 
      "NMR order parameters", 
      "atomic interactions", 
      "protein dynamics", 
      "NMR experiments", 
      "backbone motions", 
      "topological properties", 
      "atoms", 
      "protein structure", 
      "dynamics", 
      "C\u03b1 atoms", 
      "structure", 
      "simple method", 
      "parameters", 
      "motion", 
      "topological structure", 
      "distance", 
      "properties", 
      "interaction", 
      "experiments", 
      "model", 
      "prediction", 
      "residues", 
      "method", 
      "complex networks", 
      "direct link", 
      "protein", 
      "simplicity", 
      "number", 
      "C\u03b1", 
      "inverse distance", 
      "number model", 
      "study", 
      "link", 
      "contact number", 
      "network", 
      "protein contact number model", 
      "contact number model", 
      "neighboring C\u03b1 atoms", 
      "protein topological structure", 
      "protein contact-number model", 
      "contact-number model"
    ], 
    "name": "Prediction of NMR order parameters in proteins using weighted protein contact-number model", 
    "pagination": "197-200", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010342276"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00214-008-0465-0"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00214-008-0465-0", 
      "https://app.dimensions.ai/details/publication/pub.1010342276"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_462.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00214-008-0465-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00214-008-0465-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00214-008-0465-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00214-008-0465-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00214-008-0465-0'


 

This table displays all metadata directly associated to this object as RDF triples.

138 TRIPLES      22 PREDICATES      72 URIs      60 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00214-008-0465-0 schema:about anzsrc-for:03
2 anzsrc-for:0307
3 schema:author N5c1daf6ebabb45009ed830e4632770f4
4 schema:citation sg:pub.10.1038/253694a0
5 sg:pub.10.1038/260679a0
6 sg:pub.10.1038/267585a0
7 sg:pub.10.1038/nsb0902-646
8 schema:datePublished 2008-08-01
9 schema:datePublishedReg 2008-08-01
10 schema:description In the NMR experiment, the protein backbone motion can be described by the N–H order parameters. Though protein dynamics is determined by a complex network of atomic interactions, we show that the order parameter of residues can be determined using a very simple method, the weighted protein contact number model. We computed for each Cα atom the number of neighboring Cα atoms weighted by the inverse distance squared between them. We show that the weighted contact number of each residue is directly related to its order parameter. Despite the simplicity of this model, it performs better than the other method. Since we can compute the order parameters directly from the topological properties (such as protein contact number) of protein structures, our study underscores a very direct link between protein topological structure and its dynamics.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N3d28fd59009a48b69e401f3ccb1ab99b
15 N3ee86dfa78a84a9e87283e62ebddba20
16 sg:journal.1134081
17 schema:keywords
18 Cα atoms
19 NMR experiments
20 NMR order parameters
21 atomic interactions
22 atoms
23 backbone motions
24 complex networks
25 contact number
26 contact number model
27 contact-number model
28 direct link
29 distance
30 dynamics
31 experiments
32 interaction
33 inverse distance
34 link
35 method
36 model
37 motion
38 neighboring Cα atoms
39 network
40 number
41 number model
42 order parameter
43 parameters
44 prediction
45 properties
46 protein
47 protein backbone motions
48 protein contact number model
49 protein contact-number model
50 protein dynamics
51 protein structure
52 protein topological structure
53 residues
54 simple method
55 simplicity
56 structure
57 study
58 topological properties
59 topological structure
60 schema:name Prediction of NMR order parameters in proteins using weighted protein contact-number model
61 schema:pagination 197-200
62 schema:productId N06ac5ed8426d494595890a8242ba4515
63 Ncb880c9a2df44b03a6781fc74cfe9b44
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010342276
65 https://doi.org/10.1007/s00214-008-0465-0
66 schema:sdDatePublished 2022-01-01T18:18
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher Nada7e1f70e1e493db1823c39efa33d3c
69 schema:url https://doi.org/10.1007/s00214-008-0465-0
70 sgo:license sg:explorer/license/
71 sgo:sdDataset articles
72 rdf:type schema:ScholarlyArticle
73 N06ac5ed8426d494595890a8242ba4515 schema:name doi
74 schema:value 10.1007/s00214-008-0465-0
75 rdf:type schema:PropertyValue
76 N3d28fd59009a48b69e401f3ccb1ab99b schema:issueNumber 3-4
77 rdf:type schema:PublicationIssue
78 N3ee86dfa78a84a9e87283e62ebddba20 schema:volumeNumber 121
79 rdf:type schema:PublicationVolume
80 N5c1daf6ebabb45009ed830e4632770f4 rdf:first sg:person.01247652020.41
81 rdf:rest Na636b9dd51ab4406823a685f424c1f27
82 N6806a85074e44d9d9141f5e429f44f2e rdf:first sg:person.01364151270.35
83 rdf:rest rdf:nil
84 N8ca56063f2b44f46a564c1455250beea rdf:first sg:person.01152613145.33
85 rdf:rest N6806a85074e44d9d9141f5e429f44f2e
86 Na636b9dd51ab4406823a685f424c1f27 rdf:first sg:person.01144513217.11
87 rdf:rest N8ca56063f2b44f46a564c1455250beea
88 Nada7e1f70e1e493db1823c39efa33d3c schema:name Springer Nature - SN SciGraph project
89 rdf:type schema:Organization
90 Ncb880c9a2df44b03a6781fc74cfe9b44 schema:name dimensions_id
91 schema:value pub.1010342276
92 rdf:type schema:PropertyValue
93 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
94 schema:name Chemical Sciences
95 rdf:type schema:DefinedTerm
96 anzsrc-for:0307 schema:inDefinedTermSet anzsrc-for:
97 schema:name Theoretical and Computational Chemistry
98 rdf:type schema:DefinedTerm
99 sg:journal.1134081 schema:issn 1432-2234
100 1432-881X
101 schema:name Theoretical Chemistry Accounts
102 schema:publisher Springer Nature
103 rdf:type schema:Periodical
104 sg:person.01144513217.11 schema:affiliation grid-institutes:grid.260539.b
105 schema:familyName Shih
106 schema:givenName Chien-Hua
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144513217.11
108 rdf:type schema:Person
109 sg:person.01152613145.33 schema:affiliation grid-institutes:grid.260539.b
110 schema:familyName Lin
111 schema:givenName Chih-Peng
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152613145.33
113 rdf:type schema:Person
114 sg:person.01247652020.41 schema:affiliation grid-institutes:grid.260539.b
115 schema:familyName Huang
116 schema:givenName Shao-Wei
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247652020.41
118 rdf:type schema:Person
119 sg:person.01364151270.35 schema:affiliation grid-institutes:grid.260539.b
120 schema:familyName Hwang
121 schema:givenName Jenn-Kang
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364151270.35
123 rdf:type schema:Person
124 sg:pub.10.1038/253694a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017347854
125 https://doi.org/10.1038/253694a0
126 rdf:type schema:CreativeWork
127 sg:pub.10.1038/260679a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035950215
128 https://doi.org/10.1038/260679a0
129 rdf:type schema:CreativeWork
130 sg:pub.10.1038/267585a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050574674
131 https://doi.org/10.1038/267585a0
132 rdf:type schema:CreativeWork
133 sg:pub.10.1038/nsb0902-646 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020170704
134 https://doi.org/10.1038/nsb0902-646
135 rdf:type schema:CreativeWork
136 grid-institutes:grid.260539.b schema:alternateName Institute of Bioinformatics, National Chiao Tung University, 30050, HsinChu, Taiwan, ROC
137 schema:name Institute of Bioinformatics, National Chiao Tung University, 30050, HsinChu, Taiwan, ROC
138 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...