Few-body quantum and many-body classical hyperspherical approaches to reactions and to cluster dynamics View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-05

AUTHORS

A. Lombardi, F. Palazzetti, L. Peroncelli, G. Grossi, V. Aquilanti, M. B. Sevryuk

ABSTRACT

The hyperspherical method is a widely used and successful approach for the quantum treatment of elementary chemical processes. It has been mostly applied to three-atomic systems, and current progress is here outlined concerning the basic theoretical framework for the extension to four-body bound state and reactive scattering problems. Although most applications only exploit the advantages of the hyperspherical coordinate systems for the formulation of the few-body problem, the full power of the technique implies representations explicitly involving quantum hyperangular momentum operators as dynamical quantities and hyperspherical harmonics as basis functions. In terms of discrete analogues of these harmonics one has a universal representation for the kinetic energy and a diagonal representation for the potential (hyperquantization algorithm). Very recently, advances have been made on the use of the approach in classical dynamics, provided that a hyperspherical formulation is given based on “classical” definitions of the hyperangular momenta and related quantities. The aim of the present paper is to offer a retrospective and prospective view of the hyperspherical methods both in quantum and classical dynamics. Specifically, regarding the general quantum hyperspherical approaches for three- and four-body systems, we first focus on the basis set issue, and then we present developments on the classical formulation that has led to applications involving the implementations of hyperspherical techniques for classical molecular dynamics simulations of simple nanoaggregates. More... »

PAGES

709-721

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00214-006-0195-0

DOI

http://dx.doi.org/10.1007/s00214-006-0195-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1046140447


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Perugia", 
          "id": "https://www.grid.ac/institutes/grid.9027.c", 
          "name": [
            "Dipartimento di Chimica, Universit\u00e0 di Perugia, via Elce di Sotto 8, 06123, Perugia, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lombardi", 
        "givenName": "A.", 
        "id": "sg:person.01175451407.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175451407.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Perugia", 
          "id": "https://www.grid.ac/institutes/grid.9027.c", 
          "name": [
            "Dipartimento di Chimica, Universit\u00e0 di Perugia, via Elce di Sotto 8, 06123, Perugia, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Palazzetti", 
        "givenName": "F.", 
        "id": "sg:person.0714643151.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714643151.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Perugia", 
          "id": "https://www.grid.ac/institutes/grid.9027.c", 
          "name": [
            "Dipartimento di Chimica, Universit\u00e0 di Perugia, via Elce di Sotto 8, 06123, Perugia, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Peroncelli", 
        "givenName": "L.", 
        "id": "sg:person.010133532051.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010133532051.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Perugia", 
          "id": "https://www.grid.ac/institutes/grid.9027.c", 
          "name": [
            "Dipartimento di Chimica, Universit\u00e0 di Perugia, via Elce di Sotto 8, 06123, Perugia, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grossi", 
        "givenName": "G.", 
        "id": "sg:person.010316327611.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010316327611.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Perugia", 
          "id": "https://www.grid.ac/institutes/grid.9027.c", 
          "name": [
            "Dipartimento di Chimica, Universit\u00e0 di Perugia, via Elce di Sotto 8, 06123, Perugia, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aquilanti", 
        "givenName": "V.", 
        "id": "sg:person.0623264675.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623264675.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Energy Problems of Chemical Physics", 
          "id": "https://www.grid.ac/institutes/grid.434999.a", 
          "name": [
            "Institute of Energy Problems of Chemical Physics, The Russia Academy of Sciences, Leninski\u012d prospect 38, Building 2, 119334, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sevryuk", 
        "givenName": "M. B.", 
        "id": "sg:person.0635464735.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635464735.36"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00214-003-0526-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000352168", 
          "https://doi.org/10.1007/s00214-003-0526-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00214-003-0526-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000352168", 
          "https://doi.org/10.1007/s00214-003-0526-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/a605968f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004693545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00268970010019007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005242649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.commatsci.2004.11.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007265164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/a809417i", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011124073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cplett.2006.08.134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021928491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0010-4655(00)00167-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022335824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b206197j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024875614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00268970009483380", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026952206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00268970412331307671", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027255009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0009-2614(99)01128-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029210859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qua.10278", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034416841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0009-2614(03)00311-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037496272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0009-2614(03)00311-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037496272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemphys.2004.03.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044609879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qua.1527", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046138053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp030435j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056052289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp030435j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056052289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp048874l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056059016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp048874l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056059016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp054597m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056062676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp054597m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056062676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp953195j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056120873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp953195j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056120873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp9708207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056124528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp9708207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056124528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1412603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057704050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1644098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057729310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1664683", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057742724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1664755", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057742802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1665789", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057743868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1724275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057791149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1785785", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057821682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1814096", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057824310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1988311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057834514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2351718", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057851237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.451223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058029240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.451224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058029241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.475189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058059465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.476979", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058064628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00268970050177657", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058275550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.120.1058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060423251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.120.1058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060423251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.58.3705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060494247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.58.3705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060494247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.58.3718", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060494248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.58.3718", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060494248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.72.033201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060501522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.72.033201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060501522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.72.033201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060501522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.113402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060828968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.113402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060828968"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-05", 
    "datePublishedReg": "2007-05-01", 
    "description": "The hyperspherical method is a widely used and successful approach for the quantum treatment of elementary chemical processes. It has been mostly applied to three-atomic systems, and current progress is here outlined concerning the basic theoretical framework for the extension to four-body bound state and reactive scattering problems. Although most applications only exploit the advantages of the hyperspherical coordinate systems for the formulation of the few-body problem, the full power of the technique implies representations explicitly involving quantum hyperangular momentum operators as dynamical quantities and hyperspherical harmonics as basis functions. In terms of discrete analogues of these harmonics one has a universal representation for the kinetic energy and a diagonal representation for the potential (hyperquantization algorithm). Very recently, advances have been made on the use of the approach in classical dynamics, provided that a hyperspherical formulation is given based on \u201cclassical\u201d definitions of the hyperangular momenta and related quantities. The aim of the present paper is to offer a retrospective and prospective view of the hyperspherical methods both in quantum and classical dynamics. Specifically, regarding the general quantum hyperspherical approaches for three- and four-body systems, we first focus on the basis set issue, and then we present developments on the classical formulation that has led to applications involving the implementations of hyperspherical techniques for classical molecular dynamics simulations of simple nanoaggregates.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00214-006-0195-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1134081", 
        "issn": [
          "1432-881X", 
          "1432-2234"
        ], 
        "name": "Theoretical Chemistry Accounts", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5-6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "117"
      }
    ], 
    "name": "Few-body quantum and many-body classical hyperspherical approaches to reactions and to cluster dynamics", 
    "pagination": "709-721", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "dbc9a66872ebb06e75b1bc7f305a553904d6031be89bd1fdeccb1336fb3c2d8e"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00214-006-0195-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1046140447"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00214-006-0195-0", 
      "https://app.dimensions.ai/details/publication/pub.1046140447"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13096_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00214-006-0195-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00214-006-0195-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00214-006-0195-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00214-006-0195-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00214-006-0195-0'


 

This table displays all metadata directly associated to this object as RDF triples.

220 TRIPLES      21 PREDICATES      67 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00214-006-0195-0 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N656bb62873184df98bf3afa0ebb5a254
4 schema:citation sg:pub.10.1007/s00214-003-0526-3
5 https://doi.org/10.1002/qua.10278
6 https://doi.org/10.1002/qua.1527
7 https://doi.org/10.1016/j.chemphys.2004.03.027
8 https://doi.org/10.1016/j.commatsci.2004.11.008
9 https://doi.org/10.1016/j.cplett.2006.08.134
10 https://doi.org/10.1016/s0009-2614(03)00311-7
11 https://doi.org/10.1016/s0009-2614(99)01128-8
12 https://doi.org/10.1016/s0010-4655(00)00167-3
13 https://doi.org/10.1021/jp030435j
14 https://doi.org/10.1021/jp048874l
15 https://doi.org/10.1021/jp054597m
16 https://doi.org/10.1021/jp953195j
17 https://doi.org/10.1021/jp9708207
18 https://doi.org/10.1039/a605968f
19 https://doi.org/10.1039/a809417i
20 https://doi.org/10.1039/b206197j
21 https://doi.org/10.1063/1.1412603
22 https://doi.org/10.1063/1.1644098
23 https://doi.org/10.1063/1.1664683
24 https://doi.org/10.1063/1.1664755
25 https://doi.org/10.1063/1.1665789
26 https://doi.org/10.1063/1.1724275
27 https://doi.org/10.1063/1.1785785
28 https://doi.org/10.1063/1.1814096
29 https://doi.org/10.1063/1.1988311
30 https://doi.org/10.1063/1.2351718
31 https://doi.org/10.1063/1.451223
32 https://doi.org/10.1063/1.451224
33 https://doi.org/10.1063/1.475189
34 https://doi.org/10.1063/1.476979
35 https://doi.org/10.1080/00268970009483380
36 https://doi.org/10.1080/00268970010019007
37 https://doi.org/10.1080/00268970050177657
38 https://doi.org/10.1080/00268970412331307671
39 https://doi.org/10.1103/physrev.120.1058
40 https://doi.org/10.1103/physreva.58.3705
41 https://doi.org/10.1103/physreva.58.3718
42 https://doi.org/10.1103/physreva.72.033201
43 https://doi.org/10.1103/physrevlett.93.113402
44 schema:datePublished 2007-05
45 schema:datePublishedReg 2007-05-01
46 schema:description The hyperspherical method is a widely used and successful approach for the quantum treatment of elementary chemical processes. It has been mostly applied to three-atomic systems, and current progress is here outlined concerning the basic theoretical framework for the extension to four-body bound state and reactive scattering problems. Although most applications only exploit the advantages of the hyperspherical coordinate systems for the formulation of the few-body problem, the full power of the technique implies representations explicitly involving quantum hyperangular momentum operators as dynamical quantities and hyperspherical harmonics as basis functions. In terms of discrete analogues of these harmonics one has a universal representation for the kinetic energy and a diagonal representation for the potential (hyperquantization algorithm). Very recently, advances have been made on the use of the approach in classical dynamics, provided that a hyperspherical formulation is given based on “classical” definitions of the hyperangular momenta and related quantities. The aim of the present paper is to offer a retrospective and prospective view of the hyperspherical methods both in quantum and classical dynamics. Specifically, regarding the general quantum hyperspherical approaches for three- and four-body systems, we first focus on the basis set issue, and then we present developments on the classical formulation that has led to applications involving the implementations of hyperspherical techniques for classical molecular dynamics simulations of simple nanoaggregates.
47 schema:genre research_article
48 schema:inLanguage en
49 schema:isAccessibleForFree false
50 schema:isPartOf N130e838844b643448cb162712088bc7d
51 N65e29fb2b97c4a26be86eef97e6764d0
52 sg:journal.1134081
53 schema:name Few-body quantum and many-body classical hyperspherical approaches to reactions and to cluster dynamics
54 schema:pagination 709-721
55 schema:productId N1818722a9c2c4edfbe0ff32b3faa3101
56 N640ac9b479ce46e6a0279516bae2324b
57 Nbe81fe89328b4324a384d1c50a64e68d
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046140447
59 https://doi.org/10.1007/s00214-006-0195-0
60 schema:sdDatePublished 2019-04-11T14:31
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher N77a6154840044007b2219f3871cfdbf7
63 schema:url http://link.springer.com/10.1007%2Fs00214-006-0195-0
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N130e838844b643448cb162712088bc7d schema:issueNumber 5-6
68 rdf:type schema:PublicationIssue
69 N1818722a9c2c4edfbe0ff32b3faa3101 schema:name dimensions_id
70 schema:value pub.1046140447
71 rdf:type schema:PropertyValue
72 N1cb2cf1546c34737abc56d51c1b3563a rdf:first sg:person.0635464735.36
73 rdf:rest rdf:nil
74 N640ac9b479ce46e6a0279516bae2324b schema:name readcube_id
75 schema:value dbc9a66872ebb06e75b1bc7f305a553904d6031be89bd1fdeccb1336fb3c2d8e
76 rdf:type schema:PropertyValue
77 N656bb62873184df98bf3afa0ebb5a254 rdf:first sg:person.01175451407.46
78 rdf:rest Ne2f4b66dff0f4be0aaec0673f10ada6e
79 N65e29fb2b97c4a26be86eef97e6764d0 schema:volumeNumber 117
80 rdf:type schema:PublicationVolume
81 N77a6154840044007b2219f3871cfdbf7 schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 N9f32f51b36c74823978f451aded18621 rdf:first sg:person.010133532051.49
84 rdf:rest Nedebff984e5c4206a20316469fcd3c07
85 Na7d7914355b44f8ba85e6ba0184fb13d rdf:first sg:person.0623264675.64
86 rdf:rest N1cb2cf1546c34737abc56d51c1b3563a
87 Nbe81fe89328b4324a384d1c50a64e68d schema:name doi
88 schema:value 10.1007/s00214-006-0195-0
89 rdf:type schema:PropertyValue
90 Ne2f4b66dff0f4be0aaec0673f10ada6e rdf:first sg:person.0714643151.28
91 rdf:rest N9f32f51b36c74823978f451aded18621
92 Nedebff984e5c4206a20316469fcd3c07 rdf:first sg:person.010316327611.70
93 rdf:rest Na7d7914355b44f8ba85e6ba0184fb13d
94 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
95 schema:name Physical Sciences
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
98 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
99 rdf:type schema:DefinedTerm
100 sg:journal.1134081 schema:issn 1432-2234
101 1432-881X
102 schema:name Theoretical Chemistry Accounts
103 rdf:type schema:Periodical
104 sg:person.010133532051.49 schema:affiliation https://www.grid.ac/institutes/grid.9027.c
105 schema:familyName Peroncelli
106 schema:givenName L.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010133532051.49
108 rdf:type schema:Person
109 sg:person.010316327611.70 schema:affiliation https://www.grid.ac/institutes/grid.9027.c
110 schema:familyName Grossi
111 schema:givenName G.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010316327611.70
113 rdf:type schema:Person
114 sg:person.01175451407.46 schema:affiliation https://www.grid.ac/institutes/grid.9027.c
115 schema:familyName Lombardi
116 schema:givenName A.
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175451407.46
118 rdf:type schema:Person
119 sg:person.0623264675.64 schema:affiliation https://www.grid.ac/institutes/grid.9027.c
120 schema:familyName Aquilanti
121 schema:givenName V.
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623264675.64
123 rdf:type schema:Person
124 sg:person.0635464735.36 schema:affiliation https://www.grid.ac/institutes/grid.434999.a
125 schema:familyName Sevryuk
126 schema:givenName M. B.
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635464735.36
128 rdf:type schema:Person
129 sg:person.0714643151.28 schema:affiliation https://www.grid.ac/institutes/grid.9027.c
130 schema:familyName Palazzetti
131 schema:givenName F.
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714643151.28
133 rdf:type schema:Person
134 sg:pub.10.1007/s00214-003-0526-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000352168
135 https://doi.org/10.1007/s00214-003-0526-3
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1002/qua.10278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034416841
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1002/qua.1527 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046138053
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.chemphys.2004.03.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044609879
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.commatsci.2004.11.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007265164
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.cplett.2006.08.134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021928491
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/s0009-2614(03)00311-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037496272
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/s0009-2614(99)01128-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029210859
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/s0010-4655(00)00167-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022335824
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1021/jp030435j schema:sameAs https://app.dimensions.ai/details/publication/pub.1056052289
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1021/jp048874l schema:sameAs https://app.dimensions.ai/details/publication/pub.1056059016
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1021/jp054597m schema:sameAs https://app.dimensions.ai/details/publication/pub.1056062676
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1021/jp953195j schema:sameAs https://app.dimensions.ai/details/publication/pub.1056120873
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1021/jp9708207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056124528
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1039/a605968f schema:sameAs https://app.dimensions.ai/details/publication/pub.1004693545
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1039/a809417i schema:sameAs https://app.dimensions.ai/details/publication/pub.1011124073
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1039/b206197j schema:sameAs https://app.dimensions.ai/details/publication/pub.1024875614
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1063/1.1412603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057704050
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1063/1.1644098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057729310
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1063/1.1664683 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057742724
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1063/1.1664755 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057742802
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1063/1.1665789 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057743868
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1063/1.1724275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057791149
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1063/1.1785785 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057821682
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1063/1.1814096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057824310
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1063/1.1988311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057834514
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1063/1.2351718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057851237
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1063/1.451223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058029240
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1063/1.451224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058029241
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1063/1.475189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058059465
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1063/1.476979 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058064628
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1080/00268970009483380 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026952206
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1080/00268970010019007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005242649
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1080/00268970050177657 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058275550
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1080/00268970412331307671 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027255009
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1103/physrev.120.1058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060423251
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1103/physreva.58.3705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060494247
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1103/physreva.58.3718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060494248
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1103/physreva.72.033201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060501522
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1103/physrevlett.93.113402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060828968
214 rdf:type schema:CreativeWork
215 https://www.grid.ac/institutes/grid.434999.a schema:alternateName Institute of Energy Problems of Chemical Physics
216 schema:name Institute of Energy Problems of Chemical Physics, The Russia Academy of Sciences, Leninskiĭ prospect 38, Building 2, 119334, Moscow, Russia
217 rdf:type schema:Organization
218 https://www.grid.ac/institutes/grid.9027.c schema:alternateName University of Perugia
219 schema:name Dipartimento di Chimica, Università di Perugia, via Elce di Sotto 8, 06123, Perugia, Italy
220 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...