The uniform convergence of thin plate spline interpolation in two dimensions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1994-06

AUTHORS

M.J.D. Powell

ABSTRACT

Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $f$\end{document} be a function from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\cal R}^2$\end{document} to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\cal R}$\end{document} that has square integrable second derivatives and let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $s$\end{document} be the thin plate spline interpolant to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $f$\end{document} at the points \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\{ \underline v_i : i \!=\! 1,2,\ldots,n \}$\end{document} in\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\cal R}^2$\end{document} . We seek bounds on the error \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $| f(\underline x)-s(\underline x) |$\end{document} when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\underline x$\end{document} is in the convex hull of the interpolation points or when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\underline x$\end{document} is close to at least one of the interpolation points but need not be in the convex hull. We find, for example, that, if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\underline x$\end{document} is inside a triangle whose vertices are any three of the interpolation points, then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $| f(\underline x)-s(\underline x) |$\end{document} is bounded above by a multiple of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $h$\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $h$\end{document} is the length of the longest side of the triangle and where the multiplier is independent of the interpolation points. Further, if\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\cal D}$\end{document} is any bounded set in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\cal R}^2$\end{document} that is not a subset of a single straight line, then we prove that a sequence of thin plate spline interpolants converges to\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $f$\end{document} uniformly on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\cal D}$\end{document}. Specifically, we require \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $h \!\rightarrow\! 0$\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $h$\end{document} is now the least upper bound on the numbers \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\{ d( \underline x, {\cal V} ) : \underline x \!\in\! {\cal D} \}$\end{document} and where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $d( \underline x, {\cal V} )$\end{document},\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\underline x \!\in\! {\cal R}^2$\end{document} , is the least Euclidean distance from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\underline x$\end{document} to an interpolation point. Our method of analysis applies integration by parts and the Cauchy--Schwarz inequality to the scalar product between second derivatives that occurs in the variational calculation of thin plate spline interpolation. More... »

PAGES

107-128

References to SciGraph publications

  • 1979-03. Multivariate interpolation at arbitrary points made simple in ZEITSCHRIFT FÜR ANGEWANDTE MATHEMATIK UND PHYSIK
  • 1977. Splines minimizing rotation-invariant semi-norms in Sobolev spaces in CONSTRUCTIVE THEORY OF FUNCTIONS OF SEVERAL VARIABLES
  • Journal

    TITLE

    Numerische Mathematik

    ISSUE

    1

    VOLUME

    68

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s002110050051

    DOI

    http://dx.doi.org/10.1007/s002110050051

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1005167236


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Psychology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Psychology and Cognitive Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Cambridge", 
              "id": "https://www.grid.ac/institutes/grid.5335.0", 
              "name": [
                "Department of Applied Mathematics and Theoretical Physics,\nUniversity of Cambridge,\nSilver Street,\nCambridge CB3~9EW,\nEngland, GB"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Powell", 
            "givenName": "M.J.D.", 
            "id": "sg:person.07731545105.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07731545105.07"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01601941", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028612198", 
              "https://doi.org/10.1007/bf01601941"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01601941", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028612198", 
              "https://doi.org/10.1007/bf01601941"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0086566", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046059419", 
              "https://doi.org/10.1007/bfb0086566"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/0907043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062855828"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/0912070", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062857424"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1051/m2an/1978120403251", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083713248"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1994-06", 
        "datePublishedReg": "1994-06-01", 
        "description": "Let \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $f$\\end{document} be a function from \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} ${\\cal R}^2$\\end{document} to \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} ${\\cal R}$\\end{document} that has square integrable second derivatives and let \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $s$\\end{document} be the thin plate spline interpolant to \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $f$\\end{document} at the points \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $\\{ \\underline v_i : i \\!=\\! 1,2,\\ldots,n \\}$\\end{document} in\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} ${\\cal R}^2$\\end{document} . We seek bounds on the error \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $| f(\\underline x)-s(\\underline x) |$\\end{document} when \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $\\underline x$\\end{document} is in the convex hull of the interpolation points or when \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $\\underline x$\\end{document} is close to at least one of the interpolation points but need not be in the convex hull. We find, for example, that, if \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $\\underline x$\\end{document} is inside a triangle whose vertices are any three of the interpolation points, then \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $| f(\\underline x)-s(\\underline x) |$\\end{document} is bounded above by a multiple of \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $h$\\end{document}, where \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $h$\\end{document} is the length of the longest side of the triangle and where the multiplier is independent of the interpolation points. Further, if\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} ${\\cal D}$\\end{document} is any bounded set in \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} ${\\cal R}^2$\\end{document} that is not a subset of a single straight line, then we prove that a sequence of thin plate spline interpolants converges to\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $f$\\end{document} uniformly on \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} ${\\cal D}$\\end{document}. Specifically, we require \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $h \\!\\rightarrow\\! 0$\\end{document}, where \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $h$\\end{document} is now the least upper bound on the numbers \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $\\{ d( \\underline x, {\\cal V} ) : \\underline x \\!\\in\\! {\\cal D} \\}$\\end{document} and where \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $d( \\underline x, {\\cal V} )$\\end{document},\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $\\underline x \\!\\in\\! {\\cal R}^2$\\end{document} , is the least Euclidean distance from \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $\\underline x$\\end{document} to an interpolation point. Our method of analysis applies integration by parts and the Cauchy--Schwarz inequality to the scalar product between second derivatives that occurs in the variational calculation of thin plate spline interpolation.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s002110050051", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136759", 
            "issn": [
              "0029-599X", 
              "0945-3245"
            ], 
            "name": "Numerische Mathematik", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "68"
          }
        ], 
        "name": "The uniform convergence of thin plate spline interpolation in two dimensions", 
        "pagination": "107-128", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "189e39e21667d6e432bed322d7c9afad581922d312e177637eb22dc1f721537c"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s002110050051"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1005167236"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s002110050051", 
          "https://app.dimensions.ai/details/publication/pub.1005167236"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T15:45", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000485.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/s002110050051"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s002110050051'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s002110050051'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s002110050051'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s002110050051'


     

    This table displays all metadata directly associated to this object as RDF triples.

    78 TRIPLES      21 PREDICATES      32 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s002110050051 schema:about anzsrc-for:17
    2 anzsrc-for:1701
    3 schema:author N58fffe1398e140688660118d7931e413
    4 schema:citation sg:pub.10.1007/bf01601941
    5 sg:pub.10.1007/bfb0086566
    6 https://doi.org/10.1051/m2an/1978120403251
    7 https://doi.org/10.1137/0907043
    8 https://doi.org/10.1137/0912070
    9 schema:datePublished 1994-06
    10 schema:datePublishedReg 1994-06-01
    11 schema:description Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $f$\end{document} be a function from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\cal R}^2$\end{document} to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\cal R}$\end{document} that has square integrable second derivatives and let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $s$\end{document} be the thin plate spline interpolant to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $f$\end{document} at the points \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\{ \underline v_i : i \!=\! 1,2,\ldots,n \}$\end{document} in\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\cal R}^2$\end{document} . We seek bounds on the error \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $| f(\underline x)-s(\underline x) |$\end{document} when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\underline x$\end{document} is in the convex hull of the interpolation points or when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\underline x$\end{document} is close to at least one of the interpolation points but need not be in the convex hull. We find, for example, that, if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\underline x$\end{document} is inside a triangle whose vertices are any three of the interpolation points, then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $| f(\underline x)-s(\underline x) |$\end{document} is bounded above by a multiple of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $h$\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $h$\end{document} is the length of the longest side of the triangle and where the multiplier is independent of the interpolation points. Further, if\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\cal D}$\end{document} is any bounded set in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\cal R}^2$\end{document} that is not a subset of a single straight line, then we prove that a sequence of thin plate spline interpolants converges to\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $f$\end{document} uniformly on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\cal D}$\end{document}. Specifically, we require \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $h \!\rightarrow\! 0$\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $h$\end{document} is now the least upper bound on the numbers \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\{ d( \underline x, {\cal V} ) : \underline x \!\in\! {\cal D} \}$\end{document} and where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $d( \underline x, {\cal V} )$\end{document},\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\underline x \!\in\! {\cal R}^2$\end{document} , is the least Euclidean distance from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\underline x$\end{document} to an interpolation point. Our method of analysis applies integration by parts and the Cauchy--Schwarz inequality to the scalar product between second derivatives that occurs in the variational calculation of thin plate spline interpolation.
    12 schema:genre research_article
    13 schema:inLanguage en
    14 schema:isAccessibleForFree true
    15 schema:isPartOf N8533339d805141299ee4db4ebdb40b6a
    16 N8a2516de4a3143ffa4744007a040a8a9
    17 sg:journal.1136759
    18 schema:name The uniform convergence of thin plate spline interpolation in two dimensions
    19 schema:pagination 107-128
    20 schema:productId N84db88522433423c92f94d4ba69c421d
    21 Nc6ef31e6779546fdb7ff5c328091c662
    22 Nfef6108f1d4c4e60b3a4a885a55158bc
    23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005167236
    24 https://doi.org/10.1007/s002110050051
    25 schema:sdDatePublished 2019-04-10T15:45
    26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    27 schema:sdPublisher Nd5d3304637184ca085ffa2e85ebd302e
    28 schema:url http://link.springer.com/10.1007/s002110050051
    29 sgo:license sg:explorer/license/
    30 sgo:sdDataset articles
    31 rdf:type schema:ScholarlyArticle
    32 N58fffe1398e140688660118d7931e413 rdf:first sg:person.07731545105.07
    33 rdf:rest rdf:nil
    34 N84db88522433423c92f94d4ba69c421d schema:name dimensions_id
    35 schema:value pub.1005167236
    36 rdf:type schema:PropertyValue
    37 N8533339d805141299ee4db4ebdb40b6a schema:volumeNumber 68
    38 rdf:type schema:PublicationVolume
    39 N8a2516de4a3143ffa4744007a040a8a9 schema:issueNumber 1
    40 rdf:type schema:PublicationIssue
    41 Nc6ef31e6779546fdb7ff5c328091c662 schema:name doi
    42 schema:value 10.1007/s002110050051
    43 rdf:type schema:PropertyValue
    44 Nd5d3304637184ca085ffa2e85ebd302e schema:name Springer Nature - SN SciGraph project
    45 rdf:type schema:Organization
    46 Nfef6108f1d4c4e60b3a4a885a55158bc schema:name readcube_id
    47 schema:value 189e39e21667d6e432bed322d7c9afad581922d312e177637eb22dc1f721537c
    48 rdf:type schema:PropertyValue
    49 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
    50 schema:name Psychology and Cognitive Sciences
    51 rdf:type schema:DefinedTerm
    52 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
    53 schema:name Psychology
    54 rdf:type schema:DefinedTerm
    55 sg:journal.1136759 schema:issn 0029-599X
    56 0945-3245
    57 schema:name Numerische Mathematik
    58 rdf:type schema:Periodical
    59 sg:person.07731545105.07 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
    60 schema:familyName Powell
    61 schema:givenName M.J.D.
    62 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07731545105.07
    63 rdf:type schema:Person
    64 sg:pub.10.1007/bf01601941 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028612198
    65 https://doi.org/10.1007/bf01601941
    66 rdf:type schema:CreativeWork
    67 sg:pub.10.1007/bfb0086566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046059419
    68 https://doi.org/10.1007/bfb0086566
    69 rdf:type schema:CreativeWork
    70 https://doi.org/10.1051/m2an/1978120403251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083713248
    71 rdf:type schema:CreativeWork
    72 https://doi.org/10.1137/0907043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062855828
    73 rdf:type schema:CreativeWork
    74 https://doi.org/10.1137/0912070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062857424
    75 rdf:type schema:CreativeWork
    76 https://www.grid.ac/institutes/grid.5335.0 schema:alternateName University of Cambridge
    77 schema:name Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Silver Street, Cambridge CB3~9EW, England, GB
    78 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...