Spectral analysis of discrete elliptic operators and applications in control theory View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Damien Allonsius, Franck Boyer, Morgan Morancey

ABSTRACT

In this paper we propose an analysis of discrete spectral properties for a finite difference discretization of quite general 1D second-order self-adjoint elliptic operators. We particularly investigate some (uniform with respect to the discretization parameter) qualitative behavior of eigenfunctions and eigenvalues. With those estimates we manage to obtain new results for the construction of bounded families of controls for semi-discrete parabolic PDEs, in particular for boundary controls of a coupled parabolic system with fewer controls than equations. More... »

PAGES

857-911

References to SciGraph publications

  • 2016-06. Approximation of the controls for the linear beam equation in MATHEMATICS OF CONTROL, SIGNALS, AND SYSTEMS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00211-018-0983-1

    DOI

    http://dx.doi.org/10.1007/s00211-018-0983-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1105298810


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institut de Math\u00e9matiques de Marseille", 
              "id": "https://www.grid.ac/institutes/grid.473594.8", 
              "name": [
                "Aix-Marseille Universit\u00e9, CNRS, Centrale Marseille, I2M, UMR 7373, 13453, Marseille, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Allonsius", 
            "givenName": "Damien", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "French National Centre for Scientific Research", 
              "id": "https://www.grid.ac/institutes/grid.4444.0", 
              "name": [
                "Institut de Math\u00e9matiques de Toulouse, UMR 5219, Universit\u00e9 de Toulouse, CNRS, UPS IMT, 31062, Toulouse Cedex 9, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Boyer", 
            "givenName": "Franck", 
            "id": "sg:person.012211254307.85", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012211254307.85"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut de Math\u00e9matiques de Marseille", 
              "id": "https://www.grid.ac/institutes/grid.473594.8", 
              "name": [
                "Aix-Marseille Universit\u00e9, CNRS, Centrale Marseille, I2M, UMR 7373, 13453, Marseille, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Morancey", 
            "givenName": "Morgan", 
            "id": "sg:person.013034433447.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013034433447.33"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00498-016-0161-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003701027", 
              "https://doi.org/10.1007/s00498-016-0161-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.sysconle.2006.01.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008218403"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jfa.2014.07.024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014115174"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.matpur.2009.11.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026814616"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.anihpc.2013.07.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028114730"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmaa.2016.06.058", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052054227"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.matpur.2011.06.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052845253"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0962492910000012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054905269"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1051/proc/201341002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057053242"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/qam/510972", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059348778"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/imanum/dri018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059689361"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/imanum/drv026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059689944"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/0321004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062843670"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/100784278", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062858576"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/s0036144503432862", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062877822"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2140/pjm.1958.8.339", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069062639"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-12", 
        "datePublishedReg": "2018-12-01", 
        "description": "In this paper we propose an analysis of discrete spectral properties for a finite difference discretization of quite general 1D second-order self-adjoint elliptic operators. We particularly investigate some (uniform with respect to the discretization parameter) qualitative behavior of eigenfunctions and eigenvalues. With those estimates we manage to obtain new results for the construction of bounded families of controls for semi-discrete parabolic PDEs, in particular for boundary controls of a coupled parabolic system with fewer controls than equations.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00211-018-0983-1", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136759", 
            "issn": [
              "0029-599X", 
              "0945-3245"
            ], 
            "name": "Numerische Mathematik", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "140"
          }
        ], 
        "name": "Spectral analysis of discrete elliptic operators and applications in control theory", 
        "pagination": "857-911", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "b7fb71e0f0a2314699794cc57b4e191c16215c80b934d43a8499ba0ca86669e1"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00211-018-0983-1"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1105298810"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00211-018-0983-1", 
          "https://app.dimensions.ai/details/publication/pub.1105298810"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T01:16", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000562.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs00211-018-0983-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00211-018-0983-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00211-018-0983-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00211-018-0983-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00211-018-0983-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    126 TRIPLES      21 PREDICATES      43 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00211-018-0983-1 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Ndf84e2d5969340f9a686e4c9fdbfa4c5
    4 schema:citation sg:pub.10.1007/s00498-016-0161-x
    5 https://doi.org/10.1016/j.anihpc.2013.07.011
    6 https://doi.org/10.1016/j.jfa.2014.07.024
    7 https://doi.org/10.1016/j.jmaa.2016.06.058
    8 https://doi.org/10.1016/j.matpur.2009.11.003
    9 https://doi.org/10.1016/j.matpur.2011.06.005
    10 https://doi.org/10.1016/j.sysconle.2006.01.004
    11 https://doi.org/10.1017/s0962492910000012
    12 https://doi.org/10.1051/proc/201341002
    13 https://doi.org/10.1090/qam/510972
    14 https://doi.org/10.1093/imanum/dri018
    15 https://doi.org/10.1093/imanum/drv026
    16 https://doi.org/10.1137/0321004
    17 https://doi.org/10.1137/100784278
    18 https://doi.org/10.1137/s0036144503432862
    19 https://doi.org/10.2140/pjm.1958.8.339
    20 schema:datePublished 2018-12
    21 schema:datePublishedReg 2018-12-01
    22 schema:description In this paper we propose an analysis of discrete spectral properties for a finite difference discretization of quite general 1D second-order self-adjoint elliptic operators. We particularly investigate some (uniform with respect to the discretization parameter) qualitative behavior of eigenfunctions and eigenvalues. With those estimates we manage to obtain new results for the construction of bounded families of controls for semi-discrete parabolic PDEs, in particular for boundary controls of a coupled parabolic system with fewer controls than equations.
    23 schema:genre research_article
    24 schema:inLanguage en
    25 schema:isAccessibleForFree true
    26 schema:isPartOf N1a7f93bb5eb34865971e3c62914c9e84
    27 Ne76186765b204be4ae2cdf923643fe6b
    28 sg:journal.1136759
    29 schema:name Spectral analysis of discrete elliptic operators and applications in control theory
    30 schema:pagination 857-911
    31 schema:productId N4ad0c718473b48c095bcbf65831c7768
    32 N75883e0aa17547d998f4b5088b34c792
    33 Ne7e610e56b9e404a823fc7ca6ee06e0d
    34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105298810
    35 https://doi.org/10.1007/s00211-018-0983-1
    36 schema:sdDatePublished 2019-04-11T01:16
    37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    38 schema:sdPublisher N9bb388fdaf2c4ab289b88e5bc24dbbc4
    39 schema:url https://link.springer.com/10.1007%2Fs00211-018-0983-1
    40 sgo:license sg:explorer/license/
    41 sgo:sdDataset articles
    42 rdf:type schema:ScholarlyArticle
    43 N1a7f93bb5eb34865971e3c62914c9e84 schema:volumeNumber 140
    44 rdf:type schema:PublicationVolume
    45 N4ad0c718473b48c095bcbf65831c7768 schema:name readcube_id
    46 schema:value b7fb71e0f0a2314699794cc57b4e191c16215c80b934d43a8499ba0ca86669e1
    47 rdf:type schema:PropertyValue
    48 N54cf88ed2e2641cdbdfd8254e899e9e3 rdf:first sg:person.013034433447.33
    49 rdf:rest rdf:nil
    50 N75883e0aa17547d998f4b5088b34c792 schema:name doi
    51 schema:value 10.1007/s00211-018-0983-1
    52 rdf:type schema:PropertyValue
    53 N92eef2cbed8b475783c9b0580d73b82a schema:affiliation https://www.grid.ac/institutes/grid.473594.8
    54 schema:familyName Allonsius
    55 schema:givenName Damien
    56 rdf:type schema:Person
    57 N9bb388fdaf2c4ab289b88e5bc24dbbc4 schema:name Springer Nature - SN SciGraph project
    58 rdf:type schema:Organization
    59 Nbdea09446a7a4b6d8ba45c0a0269c1c7 rdf:first sg:person.012211254307.85
    60 rdf:rest N54cf88ed2e2641cdbdfd8254e899e9e3
    61 Ndf84e2d5969340f9a686e4c9fdbfa4c5 rdf:first N92eef2cbed8b475783c9b0580d73b82a
    62 rdf:rest Nbdea09446a7a4b6d8ba45c0a0269c1c7
    63 Ne76186765b204be4ae2cdf923643fe6b schema:issueNumber 4
    64 rdf:type schema:PublicationIssue
    65 Ne7e610e56b9e404a823fc7ca6ee06e0d schema:name dimensions_id
    66 schema:value pub.1105298810
    67 rdf:type schema:PropertyValue
    68 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    69 schema:name Mathematical Sciences
    70 rdf:type schema:DefinedTerm
    71 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    72 schema:name Pure Mathematics
    73 rdf:type schema:DefinedTerm
    74 sg:journal.1136759 schema:issn 0029-599X
    75 0945-3245
    76 schema:name Numerische Mathematik
    77 rdf:type schema:Periodical
    78 sg:person.012211254307.85 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
    79 schema:familyName Boyer
    80 schema:givenName Franck
    81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012211254307.85
    82 rdf:type schema:Person
    83 sg:person.013034433447.33 schema:affiliation https://www.grid.ac/institutes/grid.473594.8
    84 schema:familyName Morancey
    85 schema:givenName Morgan
    86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013034433447.33
    87 rdf:type schema:Person
    88 sg:pub.10.1007/s00498-016-0161-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1003701027
    89 https://doi.org/10.1007/s00498-016-0161-x
    90 rdf:type schema:CreativeWork
    91 https://doi.org/10.1016/j.anihpc.2013.07.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028114730
    92 rdf:type schema:CreativeWork
    93 https://doi.org/10.1016/j.jfa.2014.07.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014115174
    94 rdf:type schema:CreativeWork
    95 https://doi.org/10.1016/j.jmaa.2016.06.058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052054227
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.1016/j.matpur.2009.11.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026814616
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.1016/j.matpur.2011.06.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052845253
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1016/j.sysconle.2006.01.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008218403
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1017/s0962492910000012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054905269
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1051/proc/201341002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057053242
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1090/qam/510972 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059348778
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1093/imanum/dri018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059689361
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1093/imanum/drv026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059689944
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1137/0321004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062843670
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1137/100784278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062858576
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1137/s0036144503432862 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062877822
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.2140/pjm.1958.8.339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069062639
    120 rdf:type schema:CreativeWork
    121 https://www.grid.ac/institutes/grid.4444.0 schema:alternateName French National Centre for Scientific Research
    122 schema:name Institut de Mathématiques de Toulouse, UMR 5219, Université de Toulouse, CNRS, UPS IMT, 31062, Toulouse Cedex 9, France
    123 rdf:type schema:Organization
    124 https://www.grid.ac/institutes/grid.473594.8 schema:alternateName Institut de Mathématiques de Marseille
    125 schema:name Aix-Marseille Université, CNRS, Centrale Marseille, I2M, UMR 7373, 13453, Marseille, France
    126 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...