An analysis of Schwarz waveform relaxation domain decomposition methods for the imaginary-time linear Schrödinger and Gross-Pitaevskii equations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-12

AUTHORS

X. Antoine, E. Lorin

ABSTRACT

The aim of this paper is to derive and numerically validate some asymptotic estimates of the convergence rate of Classical and quasi-Optimal Schwarz Waveform Relaxation (SWR) domain decomposition methods applied to the computation of the stationary states of the one-dimensional linear and nonlinear Schrödinger equations with a space-dependent potential. Although SWR methods are currently used for efficiently solving high dimensional partial differential equations, their convergence analysis and most particularly obtaining expressions of their convergence rate remains largely open even in one dimension, except in simple cases. In this work, we tackle this problem for linear and nonlinear one-dimensional Schrödinger equations by developing techniques which can be extended to higher dimensional problems and other types of PDEs. The approach combines the method developed in Gander and Halpern (SIAM J Num Anal 45(2):666–697, 2007) for the linear advection reaction diffusion equation and the theory of inhomogeneous pseudodifferential operators in conjunction with the associated symbolic asymptotic expansions. For computing the stationary states, we consider the imaginary-time formulation of the Schrödinger equation based on the Normalized Gradient Flow (NGF) method and use a semi-implicit Euler scheme for the discretization. Some numerical results in the one-dimensional case illustrate the analysis for both the linear Schrödinger and Gross-Pitaevskii equations. More... »

PAGES

923-958

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00211-017-0897-3

DOI

http://dx.doi.org/10.1007/s00211-017-0897-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1090385546


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut \u00c9lie Cartan de Lorraine", 
          "id": "https://www.grid.ac/institutes/grid.462063.5", 
          "name": [
            "Institut Elie Cartan de Lorraine, Universit\u00e9 de Lorraine, F-54506, Vandoeuvre-l\u00e8s-Nancy, France", 
            "Inria Nancy Grand-Est/IECL - SPHINX team, Inria, Villers-l\u00e8s-Nancy, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Antoine", 
        "givenName": "X.", 
        "id": "sg:person.014300320417.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014300320417.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Carleton University", 
          "id": "https://www.grid.ac/institutes/grid.34428.39", 
          "name": [
            "Centre de Recherches Math\u00e9matiques, Universit\u00e9 de Montr\u00e9al, H3T 1J4, Montr\u00e9al, Canada", 
            "School of Mathematics and Statistics, Carleton University, K1S 5B6, Ottawa, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lorin", 
        "givenName": "E.", 
        "id": "sg:person.015722665547.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015722665547.54"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00211-013-0542-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001757331", 
          "https://doi.org/10.1007/s00211-013-0542-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10915-014-9902-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003403359", 
          "https://doi.org/10.1007/s10915-014-9902-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-18827-0_51", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004624200", 
          "https://doi.org/10.1007/978-3-319-18827-0_51"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cpc.2008.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006417093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2013.10.045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008630006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2008.09.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010278881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002110050141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022181073", 
          "https://doi.org/10.1007/s002110050141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2016.02.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025606386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2016.02.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025606386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2016.02.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025606386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2016.02.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025606386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2006.04.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025877509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01397547", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027125586", 
          "https://doi.org/10.1007/bf01397547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cpc.2013.07.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031884657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0021-9991(03)00097-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032591523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0021-9991(03)00097-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032591523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0025-5718-1977-0436612-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034746744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11075-016-0153-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034871031", 
          "https://doi.org/10.1007/s11075-016-0153-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11075-016-0153-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034871031", 
          "https://doi.org/10.1007/s11075-016-0153-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cpc.2014.06.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036130074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-05789-7_44", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041147266", 
          "https://doi.org/10.1007/978-3-319-05789-7_44"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aml.2015.12.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042320616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2010.05.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043024357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0021-7824(01)01213-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051623672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.62.7438", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060725957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.62.7438", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060725957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.82.056701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060741282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.82.056701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060741282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcsi.2008.2008286", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061566172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/030600209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062842687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/040606983", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062844964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/050642137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062846616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/090780535", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062857013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/100782115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062858514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s003614290139559x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062876847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0036142903425409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062877030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s1064827503422956", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062884085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0218202510004891", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062963237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3934/krm.2013.6.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071740931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5802/aif.652", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073139308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-19015-0_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086152717", 
          "https://doi.org/10.1007/978-3-319-19015-0_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00268976.2017.1290834", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090696503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611974065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098556646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/cbms/017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098698660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/gsm/082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098742403"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "The aim of this paper is to derive and numerically validate some asymptotic estimates of the convergence rate of Classical and quasi-Optimal Schwarz Waveform Relaxation (SWR) domain decomposition methods applied to the computation of the stationary states of the one-dimensional linear and nonlinear Schr\u00f6dinger equations with a space-dependent potential. Although SWR methods are currently used for efficiently solving high dimensional partial differential equations, their convergence analysis and most particularly obtaining expressions of their convergence rate remains largely open even in one dimension, except in simple cases. In this work, we tackle this problem for linear and nonlinear one-dimensional Schr\u00f6dinger equations by developing techniques which can be extended to higher dimensional problems and other types of PDEs. The approach combines the method developed in Gander and Halpern (SIAM J Num Anal 45(2):666\u2013697, 2007) for the linear advection reaction diffusion equation and the theory of inhomogeneous pseudodifferential operators in conjunction with the associated symbolic asymptotic expansions. For computing the stationary states, we consider the imaginary-time formulation of the Schr\u00f6dinger equation based on the Normalized Gradient Flow (NGF) method and use a semi-implicit Euler scheme for the discretization. Some numerical results in the one-dimensional case illustrate the analysis for both the linear Schr\u00f6dinger and Gross-Pitaevskii equations.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00211-017-0897-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136759", 
        "issn": [
          "0029-599X", 
          "0945-3245"
        ], 
        "name": "Numerische Mathematik", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "137"
      }
    ], 
    "name": "An analysis of Schwarz waveform relaxation domain decomposition methods for the imaginary-time linear Schr\u00f6dinger and Gross-Pitaevskii equations", 
    "pagination": "923-958", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7953b0c3b4d3ed8169b97b37c31217807c1591d7a824126f554d32388333fd34"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00211-017-0897-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1090385546"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00211-017-0897-3", 
      "https://app.dimensions.ai/details/publication/pub.1090385546"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87088_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00211-017-0897-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00211-017-0897-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00211-017-0897-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00211-017-0897-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00211-017-0897-3'


 

This table displays all metadata directly associated to this object as RDF triples.

195 TRIPLES      21 PREDICATES      65 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00211-017-0897-3 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nd94e494bbf3647aba6506f63eb8a895c
4 schema:citation sg:pub.10.1007/978-3-319-05789-7_44
5 sg:pub.10.1007/978-3-319-18827-0_51
6 sg:pub.10.1007/978-3-319-19015-0_2
7 sg:pub.10.1007/bf01397547
8 sg:pub.10.1007/s00211-013-0542-8
9 sg:pub.10.1007/s002110050141
10 sg:pub.10.1007/s10915-014-9902-5
11 sg:pub.10.1007/s11075-016-0153-4
12 https://doi.org/10.1016/j.aml.2015.12.012
13 https://doi.org/10.1016/j.cpc.2008.12.003
14 https://doi.org/10.1016/j.cpc.2013.07.012
15 https://doi.org/10.1016/j.cpc.2014.06.026
16 https://doi.org/10.1016/j.jcp.2006.04.019
17 https://doi.org/10.1016/j.jcp.2008.09.013
18 https://doi.org/10.1016/j.jcp.2010.05.032
19 https://doi.org/10.1016/j.jcp.2013.10.045
20 https://doi.org/10.1016/j.jcp.2016.02.035
21 https://doi.org/10.1016/s0021-7824(01)01213-2
22 https://doi.org/10.1016/s0021-9991(03)00097-4
23 https://doi.org/10.1080/00268976.2017.1290834
24 https://doi.org/10.1090/cbms/017
25 https://doi.org/10.1090/gsm/082
26 https://doi.org/10.1090/s0025-5718-1977-0436612-4
27 https://doi.org/10.1103/physreve.62.7438
28 https://doi.org/10.1103/physreve.82.056701
29 https://doi.org/10.1109/tcsi.2008.2008286
30 https://doi.org/10.1137/030600209
31 https://doi.org/10.1137/040606983
32 https://doi.org/10.1137/050642137
33 https://doi.org/10.1137/090780535
34 https://doi.org/10.1137/1.9781611974065
35 https://doi.org/10.1137/100782115
36 https://doi.org/10.1137/s003614290139559x
37 https://doi.org/10.1137/s0036142903425409
38 https://doi.org/10.1137/s1064827503422956
39 https://doi.org/10.1142/s0218202510004891
40 https://doi.org/10.3934/krm.2013.6.1
41 https://doi.org/10.5802/aif.652
42 schema:datePublished 2017-12
43 schema:datePublishedReg 2017-12-01
44 schema:description The aim of this paper is to derive and numerically validate some asymptotic estimates of the convergence rate of Classical and quasi-Optimal Schwarz Waveform Relaxation (SWR) domain decomposition methods applied to the computation of the stationary states of the one-dimensional linear and nonlinear Schrödinger equations with a space-dependent potential. Although SWR methods are currently used for efficiently solving high dimensional partial differential equations, their convergence analysis and most particularly obtaining expressions of their convergence rate remains largely open even in one dimension, except in simple cases. In this work, we tackle this problem for linear and nonlinear one-dimensional Schrödinger equations by developing techniques which can be extended to higher dimensional problems and other types of PDEs. The approach combines the method developed in Gander and Halpern (SIAM J Num Anal 45(2):666–697, 2007) for the linear advection reaction diffusion equation and the theory of inhomogeneous pseudodifferential operators in conjunction with the associated symbolic asymptotic expansions. For computing the stationary states, we consider the imaginary-time formulation of the Schrödinger equation based on the Normalized Gradient Flow (NGF) method and use a semi-implicit Euler scheme for the discretization. Some numerical results in the one-dimensional case illustrate the analysis for both the linear Schrödinger and Gross-Pitaevskii equations.
45 schema:genre research_article
46 schema:inLanguage en
47 schema:isAccessibleForFree false
48 schema:isPartOf N13a6ad8bc49a4c0c945db4730f3e6965
49 Nd1f45f0a115649b3a91fee8b7222b623
50 sg:journal.1136759
51 schema:name An analysis of Schwarz waveform relaxation domain decomposition methods for the imaginary-time linear Schrödinger and Gross-Pitaevskii equations
52 schema:pagination 923-958
53 schema:productId N0c9041b32de84cde920e06b017a50fcd
54 N297a910c8dc544ebbca1b1033750ce11
55 N8a48f5cdc36a4c5b9fc30064f88be07a
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090385546
57 https://doi.org/10.1007/s00211-017-0897-3
58 schema:sdDatePublished 2019-04-11T12:23
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher N876144320094482bb80248fb84b15962
61 schema:url https://link.springer.com/10.1007%2Fs00211-017-0897-3
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N0c9041b32de84cde920e06b017a50fcd schema:name dimensions_id
66 schema:value pub.1090385546
67 rdf:type schema:PropertyValue
68 N13a6ad8bc49a4c0c945db4730f3e6965 schema:volumeNumber 137
69 rdf:type schema:PublicationVolume
70 N297a910c8dc544ebbca1b1033750ce11 schema:name doi
71 schema:value 10.1007/s00211-017-0897-3
72 rdf:type schema:PropertyValue
73 N876144320094482bb80248fb84b15962 schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 N8a48f5cdc36a4c5b9fc30064f88be07a schema:name readcube_id
76 schema:value 7953b0c3b4d3ed8169b97b37c31217807c1591d7a824126f554d32388333fd34
77 rdf:type schema:PropertyValue
78 Nc73e46970c8a4d89be77704c0820f8dc rdf:first sg:person.015722665547.54
79 rdf:rest rdf:nil
80 Nd1f45f0a115649b3a91fee8b7222b623 schema:issueNumber 4
81 rdf:type schema:PublicationIssue
82 Nd94e494bbf3647aba6506f63eb8a895c rdf:first sg:person.014300320417.38
83 rdf:rest Nc73e46970c8a4d89be77704c0820f8dc
84 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
85 schema:name Mathematical Sciences
86 rdf:type schema:DefinedTerm
87 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
88 schema:name Pure Mathematics
89 rdf:type schema:DefinedTerm
90 sg:journal.1136759 schema:issn 0029-599X
91 0945-3245
92 schema:name Numerische Mathematik
93 rdf:type schema:Periodical
94 sg:person.014300320417.38 schema:affiliation https://www.grid.ac/institutes/grid.462063.5
95 schema:familyName Antoine
96 schema:givenName X.
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014300320417.38
98 rdf:type schema:Person
99 sg:person.015722665547.54 schema:affiliation https://www.grid.ac/institutes/grid.34428.39
100 schema:familyName Lorin
101 schema:givenName E.
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015722665547.54
103 rdf:type schema:Person
104 sg:pub.10.1007/978-3-319-05789-7_44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041147266
105 https://doi.org/10.1007/978-3-319-05789-7_44
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/978-3-319-18827-0_51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004624200
108 https://doi.org/10.1007/978-3-319-18827-0_51
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/978-3-319-19015-0_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086152717
111 https://doi.org/10.1007/978-3-319-19015-0_2
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/bf01397547 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027125586
114 https://doi.org/10.1007/bf01397547
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/s00211-013-0542-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001757331
117 https://doi.org/10.1007/s00211-013-0542-8
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s002110050141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022181073
120 https://doi.org/10.1007/s002110050141
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/s10915-014-9902-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003403359
123 https://doi.org/10.1007/s10915-014-9902-5
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/s11075-016-0153-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034871031
126 https://doi.org/10.1007/s11075-016-0153-4
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.aml.2015.12.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042320616
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.cpc.2008.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006417093
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.cpc.2013.07.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031884657
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.cpc.2014.06.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036130074
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.jcp.2006.04.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025877509
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.jcp.2008.09.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010278881
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.jcp.2010.05.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043024357
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.jcp.2013.10.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008630006
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.jcp.2016.02.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025606386
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/s0021-7824(01)01213-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051623672
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/s0021-9991(03)00097-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032591523
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1080/00268976.2017.1290834 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090696503
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1090/cbms/017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098698660
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1090/gsm/082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098742403
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1090/s0025-5718-1977-0436612-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034746744
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1103/physreve.62.7438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060725957
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1103/physreve.82.056701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060741282
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1109/tcsi.2008.2008286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061566172
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1137/030600209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062842687
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1137/040606983 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062844964
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1137/050642137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062846616
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1137/090780535 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062857013
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1137/1.9781611974065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098556646
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1137/100782115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062858514
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1137/s003614290139559x schema:sameAs https://app.dimensions.ai/details/publication/pub.1062876847
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1137/s0036142903425409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062877030
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1137/s1064827503422956 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062884085
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1142/s0218202510004891 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062963237
183 rdf:type schema:CreativeWork
184 https://doi.org/10.3934/krm.2013.6.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071740931
185 rdf:type schema:CreativeWork
186 https://doi.org/10.5802/aif.652 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073139308
187 rdf:type schema:CreativeWork
188 https://www.grid.ac/institutes/grid.34428.39 schema:alternateName Carleton University
189 schema:name Centre de Recherches Mathématiques, Université de Montréal, H3T 1J4, Montréal, Canada
190 School of Mathematics and Statistics, Carleton University, K1S 5B6, Ottawa, Canada
191 rdf:type schema:Organization
192 https://www.grid.ac/institutes/grid.462063.5 schema:alternateName Institut Élie Cartan de Lorraine
193 schema:name Inria Nancy Grand-Est/IECL - SPHINX team, Inria, Villers-lès-Nancy, France
194 Institut Elie Cartan de Lorraine, Université de Lorraine, F-54506, Vandoeuvre-lès-Nancy, France
195 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...