Prony’s method in several variables View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-06

AUTHORS

Tomas Sauer

ABSTRACT

The paper gives an extension of Prony’s method to the multivariate case which is based on the relationship between polynomial interpolation, normal forms modulo ideals and H-bases. Though the approach is mainly of algebraic nature, we also give an algorithm using techniques from Numerical Linear Algebra to solve the problem in a fast and efficient way. More... »

PAGES

411-438

References to SciGraph publications

  • 2007-08. Approximate varieties, approximate ideals and dimension reduction in NUMERICAL ALGORITHMS
  • 2000-03. Computational aspects of multivariate polynomial interpolation: Indexing the coefficients in ADVANCES IN COMPUTATIONAL MATHEMATICS
  • 2000-03. Polynomial interpolation in several variables in ADVANCES IN COMPUTATIONAL MATHEMATICS
  • 1937-12. Über das macaulaysche inverse system und dessen bedeutung für die theorie der linearen differentialgleichungen mit konstanten koeffizienten in ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITÄT HAMBURG
  • 2015-12. The multivariate Horner scheme revisited in BIT NUMERICAL MATHEMATICS
  • 2013-07. How many Fourier samples are needed for real function reconstruction? in JOURNAL OF APPLIED MATHEMATICS AND COMPUTING
  • 2000-03. H-bases for polynomial interpolation and system solving in ADVANCES IN COMPUTATIONAL MATHEMATICS
  • 1995-04. Multivariate polynomial equations with multiple zeros solved by matrix eigenproblems in NUMERISCHE MATHEMATIK
  • 1995-04. Computational aspects of multivariate polynomial interpolation in ADVANCES IN COMPUTATIONAL MATHEMATICS
  • 2009-07. A generalized flat extension theorem for moment matrices in ARCHIV DER MATHEMATIK
  • Journal

    TITLE

    Numerische Mathematik

    ISSUE

    2

    VOLUME

    136

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00211-016-0844-8

    DOI

    http://dx.doi.org/10.1007/s00211-016-0844-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1043346495


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Passau", 
              "id": "https://www.grid.ac/institutes/grid.11046.32", 
              "name": [
                "Lehrstuhl f\u00fcr Mathematik mit Schwerpunkt Digitale Bildverarbeitung & FORWISS, Universit\u00e4t Passau, Innstr. 43, 94053, Passau, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sauer", 
            "givenName": "Tomas", 
            "id": "sg:person.014130422137.82", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014130422137.82"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11075-007-9112-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000093270", 
              "https://doi.org/10.1007/s11075-007-9112-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.laa.2015.10.023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000592834"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10543-014-0533-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000864595", 
              "https://doi.org/10.1007/s10543-014-0533-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.laa.2012.10.036", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001134981"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.apnum.2014.10.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004004506"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0002-9947-00-02646-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007475192"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/242961.242966", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011634325"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jsc.2008.11.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014060521"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1018937723499", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017900650", 
              "https://doi.org/10.1023/a:1018937723499"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1018981505752", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020988019", 
              "https://doi.org/10.1023/a:1018981505752"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02948939", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023612891", 
              "https://doi.org/10.1007/bf02948939"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1570-579x(06)80009-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023942680"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/gamm.201410011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024684424"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cam.2015.11.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028442149"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002110050122", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030303430", 
              "https://doi.org/10.1007/s002110050122"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jsco.2001.0476", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033692887"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1018929521682", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034430867", 
              "https://doi.org/10.1023/a:1018929521682"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jsc.2008.11.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034521606"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/62212.62241", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037365455"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12190-012-0624-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044640612", 
              "https://doi.org/10.1007/s12190-012-0624-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02432000", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048314821", 
              "https://doi.org/10.1007/bf02432000"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00013-009-0007-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051404760", 
              "https://doi.org/10.1007/s00013-009-0007-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00013-009-0007-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051404760", 
              "https://doi.org/10.1007/s00013-009-0007-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00013-009-0007-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051404760", 
              "https://doi.org/10.1007/s00013-009-0007-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/29.32276", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061144455"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/29.56027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061144614"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tap.1986.1143830", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061494104"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/s0036142997324150", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062877484"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1216/rmj-1980-10-3-485", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064427899"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/sampta.2015.7148940", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094076341"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/cbms/097", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098708611"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-06", 
        "datePublishedReg": "2017-06-01", 
        "description": "The paper gives an extension of Prony\u2019s method to the multivariate case which is based on the relationship between polynomial interpolation, normal forms modulo ideals and H-bases. Though the approach is mainly of algebraic nature, we also give an algorithm using techniques from Numerical Linear Algebra to solve the problem in a fast and efficient way.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00211-016-0844-8", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136759", 
            "issn": [
              "0029-599X", 
              "0945-3245"
            ], 
            "name": "Numerische Mathematik", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "136"
          }
        ], 
        "name": "Prony\u2019s method in several variables", 
        "pagination": "411-438", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "ce7a01b42d9151a642b591de4b2d84fdfff56fbd7367ab38eef67948991ced2e"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00211-016-0844-8"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1043346495"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00211-016-0844-8", 
          "https://app.dimensions.ai/details/publication/pub.1043346495"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:42", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70058_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs00211-016-0844-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00211-016-0844-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00211-016-0844-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00211-016-0844-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00211-016-0844-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    158 TRIPLES      21 PREDICATES      56 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00211-016-0844-8 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N85cd51a92c194db69ea52e6c75724770
    4 schema:citation sg:pub.10.1007/bf02432000
    5 sg:pub.10.1007/bf02948939
    6 sg:pub.10.1007/s00013-009-0007-6
    7 sg:pub.10.1007/s002110050122
    8 sg:pub.10.1007/s10543-014-0533-x
    9 sg:pub.10.1007/s11075-007-9112-4
    10 sg:pub.10.1007/s12190-012-0624-2
    11 sg:pub.10.1023/a:1018929521682
    12 sg:pub.10.1023/a:1018937723499
    13 sg:pub.10.1023/a:1018981505752
    14 https://doi.org/10.1002/gamm.201410011
    15 https://doi.org/10.1006/jsco.2001.0476
    16 https://doi.org/10.1016/j.apnum.2014.10.003
    17 https://doi.org/10.1016/j.cam.2015.11.013
    18 https://doi.org/10.1016/j.jsc.2008.11.003
    19 https://doi.org/10.1016/j.jsc.2008.11.010
    20 https://doi.org/10.1016/j.laa.2012.10.036
    21 https://doi.org/10.1016/j.laa.2015.10.023
    22 https://doi.org/10.1016/s1570-579x(06)80009-1
    23 https://doi.org/10.1090/cbms/097
    24 https://doi.org/10.1090/s0002-9947-00-02646-5
    25 https://doi.org/10.1109/29.32276
    26 https://doi.org/10.1109/29.56027
    27 https://doi.org/10.1109/sampta.2015.7148940
    28 https://doi.org/10.1109/tap.1986.1143830
    29 https://doi.org/10.1137/s0036142997324150
    30 https://doi.org/10.1145/242961.242966
    31 https://doi.org/10.1145/62212.62241
    32 https://doi.org/10.1216/rmj-1980-10-3-485
    33 schema:datePublished 2017-06
    34 schema:datePublishedReg 2017-06-01
    35 schema:description The paper gives an extension of Prony’s method to the multivariate case which is based on the relationship between polynomial interpolation, normal forms modulo ideals and H-bases. Though the approach is mainly of algebraic nature, we also give an algorithm using techniques from Numerical Linear Algebra to solve the problem in a fast and efficient way.
    36 schema:genre research_article
    37 schema:inLanguage en
    38 schema:isAccessibleForFree true
    39 schema:isPartOf Na9a50e09c4814722ad7eea2cc26e069e
    40 Nbd146be0df494688bc625a734defb410
    41 sg:journal.1136759
    42 schema:name Prony’s method in several variables
    43 schema:pagination 411-438
    44 schema:productId N3e5f2a17a3a2455fb6dca1b9e8fc094d
    45 Nb7ad2f9513bf48cbbd53537dd3b23940
    46 Nbadbcf56f4e146bfa6422e19339b3d2f
    47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043346495
    48 https://doi.org/10.1007/s00211-016-0844-8
    49 schema:sdDatePublished 2019-04-11T12:42
    50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    51 schema:sdPublisher N5d469f4086b04e8397f6553f769ca0fe
    52 schema:url https://link.springer.com/10.1007%2Fs00211-016-0844-8
    53 sgo:license sg:explorer/license/
    54 sgo:sdDataset articles
    55 rdf:type schema:ScholarlyArticle
    56 N3e5f2a17a3a2455fb6dca1b9e8fc094d schema:name readcube_id
    57 schema:value ce7a01b42d9151a642b591de4b2d84fdfff56fbd7367ab38eef67948991ced2e
    58 rdf:type schema:PropertyValue
    59 N5d469f4086b04e8397f6553f769ca0fe schema:name Springer Nature - SN SciGraph project
    60 rdf:type schema:Organization
    61 N85cd51a92c194db69ea52e6c75724770 rdf:first sg:person.014130422137.82
    62 rdf:rest rdf:nil
    63 Na9a50e09c4814722ad7eea2cc26e069e schema:issueNumber 2
    64 rdf:type schema:PublicationIssue
    65 Nb7ad2f9513bf48cbbd53537dd3b23940 schema:name dimensions_id
    66 schema:value pub.1043346495
    67 rdf:type schema:PropertyValue
    68 Nbadbcf56f4e146bfa6422e19339b3d2f schema:name doi
    69 schema:value 10.1007/s00211-016-0844-8
    70 rdf:type schema:PropertyValue
    71 Nbd146be0df494688bc625a734defb410 schema:volumeNumber 136
    72 rdf:type schema:PublicationVolume
    73 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    74 schema:name Mathematical Sciences
    75 rdf:type schema:DefinedTerm
    76 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    77 schema:name Pure Mathematics
    78 rdf:type schema:DefinedTerm
    79 sg:journal.1136759 schema:issn 0029-599X
    80 0945-3245
    81 schema:name Numerische Mathematik
    82 rdf:type schema:Periodical
    83 sg:person.014130422137.82 schema:affiliation https://www.grid.ac/institutes/grid.11046.32
    84 schema:familyName Sauer
    85 schema:givenName Tomas
    86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014130422137.82
    87 rdf:type schema:Person
    88 sg:pub.10.1007/bf02432000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048314821
    89 https://doi.org/10.1007/bf02432000
    90 rdf:type schema:CreativeWork
    91 sg:pub.10.1007/bf02948939 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023612891
    92 https://doi.org/10.1007/bf02948939
    93 rdf:type schema:CreativeWork
    94 sg:pub.10.1007/s00013-009-0007-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051404760
    95 https://doi.org/10.1007/s00013-009-0007-6
    96 rdf:type schema:CreativeWork
    97 sg:pub.10.1007/s002110050122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030303430
    98 https://doi.org/10.1007/s002110050122
    99 rdf:type schema:CreativeWork
    100 sg:pub.10.1007/s10543-014-0533-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1000864595
    101 https://doi.org/10.1007/s10543-014-0533-x
    102 rdf:type schema:CreativeWork
    103 sg:pub.10.1007/s11075-007-9112-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000093270
    104 https://doi.org/10.1007/s11075-007-9112-4
    105 rdf:type schema:CreativeWork
    106 sg:pub.10.1007/s12190-012-0624-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044640612
    107 https://doi.org/10.1007/s12190-012-0624-2
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.1023/a:1018929521682 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034430867
    110 https://doi.org/10.1023/a:1018929521682
    111 rdf:type schema:CreativeWork
    112 sg:pub.10.1023/a:1018937723499 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017900650
    113 https://doi.org/10.1023/a:1018937723499
    114 rdf:type schema:CreativeWork
    115 sg:pub.10.1023/a:1018981505752 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020988019
    116 https://doi.org/10.1023/a:1018981505752
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1002/gamm.201410011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024684424
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1006/jsco.2001.0476 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033692887
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1016/j.apnum.2014.10.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004004506
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1016/j.cam.2015.11.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028442149
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1016/j.jsc.2008.11.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034521606
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1016/j.jsc.2008.11.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014060521
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1016/j.laa.2012.10.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001134981
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1016/j.laa.2015.10.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000592834
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1016/s1570-579x(06)80009-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023942680
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1090/cbms/097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098708611
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1090/s0002-9947-00-02646-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007475192
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1109/29.32276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061144455
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1109/29.56027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061144614
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1109/sampta.2015.7148940 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094076341
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1109/tap.1986.1143830 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061494104
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1137/s0036142997324150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062877484
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1145/242961.242966 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011634325
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1145/62212.62241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037365455
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1216/rmj-1980-10-3-485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064427899
    155 rdf:type schema:CreativeWork
    156 https://www.grid.ac/institutes/grid.11046.32 schema:alternateName University of Passau
    157 schema:name Lehrstuhl für Mathematik mit Schwerpunkt Digitale Bildverarbeitung & FORWISS, Universität Passau, Innstr. 43, 94053, Passau, Germany
    158 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...