A high order discontinuous Galerkin Nitsche method for elliptic problems with fictitious boundary View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-04

AUTHORS

August Johansson, Mats G. Larson

ABSTRACT

We present a discontinuous Galerkin method, based on the classical method of Nitsche, for elliptic problems with an immersed boundary representation on a structured grid. In such methods very small elements typically occur at the boundary, leading to breakdown of the discrete coercivity as well as numerical instabilities. In this work we propose a method that avoids using very small elements on the boundary by associating them to a neighboring element with a sufficiently large intersection with the domain. This construction allows us to prove the crucial inverse inequality that leads to a coercive bilinear form and as a consequence we obtain optimal order a priori error estimates. Furthermore, we prove a bound of the condition number of the stiffness matrix. All the results are valid for polynomials of arbitrary order. We also discuss the implementation of the method and present numerical examples in three dimensions. More... »

PAGES

607-628

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00211-012-0497-1

DOI

http://dx.doi.org/10.1007/s00211-012-0497-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023943686


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of California, Berkeley", 
          "id": "https://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "Department of Mathematics, Lawrence Berkeley National Laboratory, University of California, 94720-3840, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Johansson", 
        "givenName": "August", 
        "id": "sg:person.07730125211.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07730125211.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ume\u00e5 University", 
          "id": "https://www.grid.ac/institutes/grid.12650.30", 
          "name": [
            "Department of Mathematics, Ume\u00e5 University, 901 87, Ume\u00e5, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Larson", 
        "givenName": "Mats G.", 
        "id": "sg:person.013665426143.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013665426143.60"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0045-7825(02)00524-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001853987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0045-7825(02)00524-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001853987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cma.2010.05.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011638372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02995904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012757526", 
          "https://doi.org/10.1007/bf02995904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1013862413", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-4355-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013862413", 
          "https://doi.org/10.1007/978-1-4757-4355-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-4355-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013862413", 
          "https://doi.org/10.1007/978-1-4757-4355-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0707997105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018093107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nme.2311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018601037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apnum.2011.01.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021562941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.crma.2010.10.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024245700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1024684784", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-3658-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024684784", 
          "https://doi.org/10.1007/978-1-4757-3658-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-3658-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024684784", 
          "https://doi.org/10.1007/978-1-4757-3658-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0045-7825(01)00215-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024929275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00791-008-0099-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049435026", 
          "https://doi.org/10.1007/s00791-008-0099-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00791-008-0099-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049435026", 
          "https://doi.org/10.1007/s00791-008-0099-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apnum.2011.06.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052236386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/m2an:2003039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057033037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/imanum/drn081", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059689559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0036142901384162", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062876770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/37402.37422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063169297"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-04", 
    "datePublishedReg": "2013-04-01", 
    "description": "We present a discontinuous Galerkin method, based on the classical method of Nitsche, for elliptic problems with an immersed boundary representation on a structured grid. In such methods very small elements typically occur at the boundary, leading to breakdown of the discrete coercivity as well as numerical instabilities. In this work we propose a method that avoids using very small elements on the boundary by associating them to a neighboring element with a sufficiently large intersection with the domain. This construction allows us to prove the crucial inverse inequality that leads to a coercive bilinear form and as a consequence we obtain optimal order a priori error estimates. Furthermore, we prove a bound of the condition number of the stiffness matrix. All the results are valid for polynomials of arbitrary order. We also discuss the implementation of the method and present numerical examples in three dimensions.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00211-012-0497-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136759", 
        "issn": [
          "0029-599X", 
          "0945-3245"
        ], 
        "name": "Numerische Mathematik", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "123"
      }
    ], 
    "name": "A high order discontinuous Galerkin Nitsche method for elliptic problems with fictitious boundary", 
    "pagination": "607-628", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7211d849d1858d089ee826030207a08e89a67030209ff6e38aba116258c6cf18"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00211-012-0497-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023943686"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00211-012-0497-1", 
      "https://app.dimensions.ai/details/publication/pub.1023943686"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000488.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00211-012-0497-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00211-012-0497-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00211-012-0497-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00211-012-0497-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00211-012-0497-1'


 

This table displays all metadata directly associated to this object as RDF triples.

127 TRIPLES      21 PREDICATES      45 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00211-012-0497-1 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N94f6e0956e0441d1ab094e1f1f2098df
4 schema:citation sg:pub.10.1007/978-1-4757-3658-8
5 sg:pub.10.1007/978-1-4757-4355-5
6 sg:pub.10.1007/bf02995904
7 sg:pub.10.1007/s00791-008-0099-8
8 https://app.dimensions.ai/details/publication/pub.1013862413
9 https://app.dimensions.ai/details/publication/pub.1024684784
10 https://doi.org/10.1002/nme.2311
11 https://doi.org/10.1016/j.apnum.2011.01.008
12 https://doi.org/10.1016/j.apnum.2011.06.005
13 https://doi.org/10.1016/j.cma.2010.05.011
14 https://doi.org/10.1016/j.crma.2010.10.006
15 https://doi.org/10.1016/s0045-7825(01)00215-8
16 https://doi.org/10.1016/s0045-7825(02)00524-8
17 https://doi.org/10.1051/m2an:2003039
18 https://doi.org/10.1073/pnas.0707997105
19 https://doi.org/10.1093/imanum/drn081
20 https://doi.org/10.1137/s0036142901384162
21 https://doi.org/10.1145/37402.37422
22 schema:datePublished 2013-04
23 schema:datePublishedReg 2013-04-01
24 schema:description We present a discontinuous Galerkin method, based on the classical method of Nitsche, for elliptic problems with an immersed boundary representation on a structured grid. In such methods very small elements typically occur at the boundary, leading to breakdown of the discrete coercivity as well as numerical instabilities. In this work we propose a method that avoids using very small elements on the boundary by associating them to a neighboring element with a sufficiently large intersection with the domain. This construction allows us to prove the crucial inverse inequality that leads to a coercive bilinear form and as a consequence we obtain optimal order a priori error estimates. Furthermore, we prove a bound of the condition number of the stiffness matrix. All the results are valid for polynomials of arbitrary order. We also discuss the implementation of the method and present numerical examples in three dimensions.
25 schema:genre research_article
26 schema:inLanguage en
27 schema:isAccessibleForFree false
28 schema:isPartOf N610bd47f0e124d98bca20614cb9bbd24
29 N703f79c4d3f14dba9f19a2ce8ae68c1d
30 sg:journal.1136759
31 schema:name A high order discontinuous Galerkin Nitsche method for elliptic problems with fictitious boundary
32 schema:pagination 607-628
33 schema:productId N731a84aae84240b59eb80622e0f279d2
34 N7c147534d63a422dab654e86b318bce6
35 Na16bc1d693cc4c2fbe193ef1d91270af
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023943686
37 https://doi.org/10.1007/s00211-012-0497-1
38 schema:sdDatePublished 2019-04-10T19:52
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher Nddcc99356ff44e18b51e6cca6232c1ee
41 schema:url http://link.springer.com/10.1007/s00211-012-0497-1
42 sgo:license sg:explorer/license/
43 sgo:sdDataset articles
44 rdf:type schema:ScholarlyArticle
45 N1da18f693d4d4e98b9888d102713362e rdf:first sg:person.013665426143.60
46 rdf:rest rdf:nil
47 N610bd47f0e124d98bca20614cb9bbd24 schema:volumeNumber 123
48 rdf:type schema:PublicationVolume
49 N703f79c4d3f14dba9f19a2ce8ae68c1d schema:issueNumber 4
50 rdf:type schema:PublicationIssue
51 N731a84aae84240b59eb80622e0f279d2 schema:name doi
52 schema:value 10.1007/s00211-012-0497-1
53 rdf:type schema:PropertyValue
54 N7c147534d63a422dab654e86b318bce6 schema:name readcube_id
55 schema:value 7211d849d1858d089ee826030207a08e89a67030209ff6e38aba116258c6cf18
56 rdf:type schema:PropertyValue
57 N94f6e0956e0441d1ab094e1f1f2098df rdf:first sg:person.07730125211.51
58 rdf:rest N1da18f693d4d4e98b9888d102713362e
59 Na16bc1d693cc4c2fbe193ef1d91270af schema:name dimensions_id
60 schema:value pub.1023943686
61 rdf:type schema:PropertyValue
62 Nddcc99356ff44e18b51e6cca6232c1ee schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
65 schema:name Mathematical Sciences
66 rdf:type schema:DefinedTerm
67 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
68 schema:name Numerical and Computational Mathematics
69 rdf:type schema:DefinedTerm
70 sg:journal.1136759 schema:issn 0029-599X
71 0945-3245
72 schema:name Numerische Mathematik
73 rdf:type schema:Periodical
74 sg:person.013665426143.60 schema:affiliation https://www.grid.ac/institutes/grid.12650.30
75 schema:familyName Larson
76 schema:givenName Mats G.
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013665426143.60
78 rdf:type schema:Person
79 sg:person.07730125211.51 schema:affiliation https://www.grid.ac/institutes/grid.47840.3f
80 schema:familyName Johansson
81 schema:givenName August
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07730125211.51
83 rdf:type schema:Person
84 sg:pub.10.1007/978-1-4757-3658-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024684784
85 https://doi.org/10.1007/978-1-4757-3658-8
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/978-1-4757-4355-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013862413
88 https://doi.org/10.1007/978-1-4757-4355-5
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/bf02995904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012757526
91 https://doi.org/10.1007/bf02995904
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/s00791-008-0099-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049435026
94 https://doi.org/10.1007/s00791-008-0099-8
95 rdf:type schema:CreativeWork
96 https://app.dimensions.ai/details/publication/pub.1013862413 schema:CreativeWork
97 https://app.dimensions.ai/details/publication/pub.1024684784 schema:CreativeWork
98 https://doi.org/10.1002/nme.2311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018601037
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/j.apnum.2011.01.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021562941
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/j.apnum.2011.06.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052236386
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/j.cma.2010.05.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011638372
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/j.crma.2010.10.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024245700
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/s0045-7825(01)00215-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024929275
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/s0045-7825(02)00524-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001853987
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1051/m2an:2003039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057033037
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1073/pnas.0707997105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018093107
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1093/imanum/drn081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059689559
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1137/s0036142901384162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062876770
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1145/37402.37422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063169297
121 rdf:type schema:CreativeWork
122 https://www.grid.ac/institutes/grid.12650.30 schema:alternateName Umeå University
123 schema:name Department of Mathematics, Umeå University, 901 87, Umeå, Sweden
124 rdf:type schema:Organization
125 https://www.grid.ac/institutes/grid.47840.3f schema:alternateName University of California, Berkeley
126 schema:name Department of Mathematics, Lawrence Berkeley National Laboratory, University of California, 94720-3840, Berkeley, CA, USA
127 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...