Ontology type: schema:ScholarlyArticle
2000-03
AUTHORSJ. Magyar, T. Bányász, P. Szigligeti, Å. Körtvély, A. Jednákovits, P.P. Nánási
ABSTRACT. Concentration-dependent effects of bimoclomol, a novel heat shock protein (HSP) coinducer, were studied on the parameters of action potential and transmembrane ionic currents in enzymatically dispersed canine ventricular cardiomyocytes using conventional microelectrode and whole cell voltage clamp techniques. Bimoclomol (10–100 µM) decreased the maximum velocity of depolarization (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot V$$\end{document}max) and amplitude of action potentials in a concentration-dependent manner. These effects were fully reversible after a 5-min period of washout in drug-free medium. Action potential duration measured at 50% or 90% level of repolarization (APD-50 and APD-90, respectively) was markedly shortened by bimoclomol. Both APD-50 and APD-90 were decreased, but the reduction in APD-50 was more pronounced. The APD-shortening effect of bimoclomol was significantly reduced in the presence of 20 nM charybdotoxin (inhibitor of the Ca-dependent K current) or 0.5 mM anthracene-9-carboxylic acid (inhibitor of the Ca-dependent Cl current) or 1 µM glibenclamide (inhibitor of the ATP-sensitive K current). In the presence of anthracene-9-carboxylic acid, APD-90 was lengthened by bimoclomol. The APD-shortening effect of bimoclomol was also partially antagonized by chelation of intracellular Ca2+ by application of the cell permeant form of BAPTA, or when using 10 mM EGTA-containing patch pipettes to record action potentials. The \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot V$$\end{document}max-depressant effect of bimoclomol was not affected by charybdotoxin, anthracene-9-carboxylic acid, glibenclamide, or BAPTA load.In voltage clamped cardiomyocytes bimoclomol (100 µM) had no effect on the amplitude of ICa, but decreased significantly the inactivation time constant of ICa (from 19.8±1.6 ms to 16.8±1.2 ms at 0 mV). Bimoclomol also decreased significantly the amplitude of IK1 (from –20.5±1.1 pA/pF to –16.6±0.8 pA/pF at –135 mV), causing reduction in slope of the negative branch of the I-V curve. At positive potentials, however, bimoclomol increased outward current. The bimoclomol-induced current, therefore, was studied in the presence of BaCl2, when IK1 current was blocked. The bimoclomol-induced current had a reversal potential close to –90 mV. Bimoclomol (100 µM) had no effect on the amplitude or kinetic properties of the transient outward K current (Ito) and the delayed rectifier K current (IK).It is concluded that bimoclomol exerts both Ca-independent (inhibition of INa and IK1, activation of the ATP-sensitive K current) and Ca-dependent effects (mediated by Ca-activated Cl and probably K currents) in canine ventricular myocytes. More... »
PAGES303-310
http://scigraph.springernature.com/pub.10.1007/s002109900164
DOIhttp://dx.doi.org/10.1007/s002109900164
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1020774950
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/10731044
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Medical and Health Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Neurosciences",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Action Potentials",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Animals",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Cells, Cultured",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Dogs",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Dose-Response Relationship, Drug",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Electric Stimulation",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Electrophysiology",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Heart Ventricles",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Imides",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Pyridines",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Ventricular Function",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Physiology, University Medical School of Debrecen, P.O. Box 22, 4012 Debrecen, Hungary",
"id": "http://www.grid.ac/institutes/grid.7122.6",
"name": [
"Department of Physiology, University Medical School of Debrecen, P.O. Box 22, 4012 Debrecen, Hungary"
],
"type": "Organization"
},
"familyName": "Magyar",
"givenName": "J.",
"id": "sg:person.01206027354.83",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206027354.83"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Physiology, University Medical School of Debrecen, P.O. Box 22, 4012 Debrecen, Hungary",
"id": "http://www.grid.ac/institutes/grid.7122.6",
"name": [
"Department of Physiology, University Medical School of Debrecen, P.O. Box 22, 4012 Debrecen, Hungary"
],
"type": "Organization"
},
"familyName": "B\u00e1ny\u00e1sz",
"givenName": "T.",
"id": "sg:person.0772313221.04",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772313221.04"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Physiology, University Medical School of Debrecen, P.O. Box 22, 4012 Debrecen, Hungary",
"id": "http://www.grid.ac/institutes/grid.7122.6",
"name": [
"Department of Physiology, University Medical School of Debrecen, P.O. Box 22, 4012 Debrecen, Hungary"
],
"type": "Organization"
},
"familyName": "Szigligeti",
"givenName": "P.",
"id": "sg:person.01367543223.37",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01367543223.37"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Physiology, University Medical School of Debrecen, P.O. Box 22, 4012 Debrecen, Hungary",
"id": "http://www.grid.ac/institutes/grid.7122.6",
"name": [
"Department of Physiology, University Medical School of Debrecen, P.O. Box 22, 4012 Debrecen, Hungary"
],
"type": "Organization"
},
"familyName": "K\u00f6rtv\u00e9ly",
"givenName": "\u00c5.",
"id": "sg:person.01072716562.79",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01072716562.79"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Biorex Research and Development Co., P.O. Box 348, 8201 Veszpr\u00e9m-Szabads\u00e1gpuszta, Hungary",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Biorex Research and Development Co., P.O. Box 348, 8201 Veszpr\u00e9m-Szabads\u00e1gpuszta, Hungary"
],
"type": "Organization"
},
"familyName": "Jedn\u00e1kovits",
"givenName": "A.",
"id": "sg:person.01075513761.41",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075513761.41"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Physiology, University Medical School of Debrecen, P.O. Box 22, 4012 Debrecen, Hungary",
"id": "http://www.grid.ac/institutes/grid.7122.6",
"name": [
"Department of Physiology, University Medical School of Debrecen, P.O. Box 22, 4012 Debrecen, Hungary"
],
"type": "Organization"
},
"familyName": "N\u00e1n\u00e1si",
"givenName": "P.P.",
"id": "sg:person.0724365203.35",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724365203.35"
],
"type": "Person"
}
],
"datePublished": "2000-03",
"datePublishedReg": "2000-03-01",
"description": "Abstract. Concentration-dependent effects of bimoclomol, a novel heat shock protein (HSP) coinducer, were studied on the parameters of action potential and transmembrane ionic currents in enzymatically dispersed canine ventricular cardiomyocytes using conventional microelectrode and whole cell voltage clamp techniques. Bimoclomol (10\u2013100\u00a0\u00b5M) decreased the maximum velocity of depolarization (\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\dot V$$\\end{document}max) and amplitude of action potentials in a concentration-dependent manner. These effects were fully reversible after a 5-min period of washout in drug-free medium. Action potential duration measured at 50% or 90% level of repolarization (APD-50 and APD-90, respectively) was markedly shortened by bimoclomol. Both APD-50 and APD-90 were decreased, but the reduction in APD-50 was more pronounced. The APD-shortening effect of bimoclomol was significantly reduced in the presence of 20\u00a0nM charybdotoxin (inhibitor of the Ca-dependent K current) or 0.5\u00a0mM anthracene-9-carboxylic acid (inhibitor of the Ca-dependent Cl current) or 1\u00a0\u00b5M glibenclamide (inhibitor of the ATP-sensitive K current). In the presence of anthracene-9-carboxylic acid, APD-90 was lengthened by bimoclomol. The APD-shortening effect of bimoclomol was also partially antagonized by chelation of intracellular Ca2+ by application of the cell permeant form of BAPTA, or when using 10\u00a0mM EGTA-containing patch pipettes to record action potentials. The \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\dot V$$\\end{document}max-depressant effect of bimoclomol was not affected by charybdotoxin, anthracene-9-carboxylic acid, glibenclamide, or BAPTA load.In voltage clamped cardiomyocytes bimoclomol (100\u00a0\u00b5M) had no effect on the amplitude of ICa, but decreased significantly the inactivation time constant of ICa (from 19.8\u00b11.6\u00a0ms to 16.8\u00b11.2\u00a0ms at 0\u00a0mV). Bimoclomol also decreased significantly the amplitude of IK1 (from \u201320.5\u00b11.1 pA/pF to \u201316.6\u00b10.8 pA/pF at \u2013135\u00a0mV), causing reduction in slope of the negative branch of the I-V curve. At positive potentials, however, bimoclomol increased outward current. The bimoclomol-induced current, therefore, was studied in the presence of BaCl2, when IK1 current was blocked. The bimoclomol-induced current had a reversal potential close to \u201390\u00a0mV. Bimoclomol (100\u00a0\u00b5M) had no effect on the amplitude or kinetic properties of the transient outward K current (Ito) and the delayed rectifier K current (IK).It is concluded that bimoclomol exerts both Ca-independent (inhibition of INa and IK1, activation of the ATP-sensitive K current) and Ca-dependent effects (mediated by Ca-activated Cl and probably K currents) in canine ventricular myocytes.",
"genre": "article",
"id": "sg:pub.10.1007/s002109900164",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1015404",
"issn": [
"0028-1298",
"1432-1912"
],
"name": "Naunyn-Schmiedeberg's Archives of Pharmacology",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "3",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "361"
}
],
"keywords": [
"effect of bimoclomol",
"canine ventricular myocytes",
"action potentials",
"APD-50",
"anthracene-9-carboxylic acid",
"APD 90",
"novel heat shock protein coinducer",
"ventricular myocytes",
"whole-cell voltage-clamp technique",
"amplitude of IK1",
"levels of repolarization",
"action potential duration",
"amplitude of ICa",
"canine ventricular cardiomyocytes",
"cell-permeant form",
"voltage-clamp technique",
"drug-free medium",
"transient outward K",
"concentration-dependent manner",
"nM charybdotoxin",
"depressant effect",
"electrophysiological effects",
"concentration-dependent effects",
"bimoclomol",
"IK1 current",
"potential duration",
"clamp technique",
"intracellular Ca2",
"ventricular cardiomyocytes",
"conventional microelectrodes",
"rectifier K",
"permeant form",
"transmembrane ionic currents",
"glibenclamide",
"charybdotoxin",
"myocytes",
"ionic currents",
"ICA",
"inactivation time",
"presence of BaCl2",
"repolarization",
"APD",
"BAPTA",
"IK1",
"washout",
"cardiomyocytes",
"effect",
"depolarization",
"duration",
"presence",
"acid",
"exerts",
"reduction",
"Ca2",
"potential",
"maximum velocity",
"period",
"levels",
"coinducer",
"microelectrodes",
"amplitude",
"chelation",
"manner",
"BaCl2",
"positive potentials",
"kinetic properties",
"time",
"curves",
"patches",
"branches",
"form",
"technique",
"medium",
"Ca",
"current",
"parameters",
"load",
"velocity",
"slope",
"properties",
"applications",
"voltage",
"negative branch"
],
"name": "Electrophysiological effects of bimoclomol in canine ventricular myocytes",
"pagination": "303-310",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1020774950"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s002109900164"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"10731044"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s002109900164",
"https://app.dimensions.ai/details/publication/pub.1020774950"
],
"sdDataset": "articles",
"sdDatePublished": "2022-08-04T16:54",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_347.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s002109900164"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s002109900164'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s002109900164'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s002109900164'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s002109900164'
This table displays all metadata directly associated to this object as RDF triples.
226 TRIPLES
20 PREDICATES
120 URIs
112 LITERALS
18 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s002109900164 | schema:about | N00cec2a7e73848d1acb2177cdc94a070 |
2 | ″ | ″ | N0f1f25e268f54bf290077fe93a425f4f |
3 | ″ | ″ | N2b82e64fb4d9402dbca7fbe197ee08f3 |
4 | ″ | ″ | N572e78331787406fae3560819d4bd6e3 |
5 | ″ | ″ | N7bc5a5767bd243e7ada125b9f41c733b |
6 | ″ | ″ | N7cb01306ca984cd99955c24edcca5cda |
7 | ″ | ″ | N81f1db4473414cc3a66375e3b0cdf310 |
8 | ″ | ″ | N86242483eed741fb8d97adfd5aed7c21 |
9 | ″ | ″ | Na102ad04332642a49692fbdf046bd3a5 |
10 | ″ | ″ | Ncb31e842b0b74c1fa9fd16e1d58cae16 |
11 | ″ | ″ | Nf4a56cffa420460f946d1e9e8752d54f |
12 | ″ | ″ | anzsrc-for:11 |
13 | ″ | ″ | anzsrc-for:1109 |
14 | ″ | schema:author | N52764fba07d04cf7bc29c1930812d6c8 |
15 | ″ | schema:datePublished | 2000-03 |
16 | ″ | schema:datePublishedReg | 2000-03-01 |
17 | ″ | schema:description | Abstract. Concentration-dependent effects of bimoclomol, a novel heat shock protein (HSP) coinducer, were studied on the parameters of action potential and transmembrane ionic currents in enzymatically dispersed canine ventricular cardiomyocytes using conventional microelectrode and whole cell voltage clamp techniques. Bimoclomol (10–100 µM) decreased the maximum velocity of depolarization (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot V$$\end{document}max) and amplitude of action potentials in a concentration-dependent manner. These effects were fully reversible after a 5-min period of washout in drug-free medium. Action potential duration measured at 50% or 90% level of repolarization (APD-50 and APD-90, respectively) was markedly shortened by bimoclomol. Both APD-50 and APD-90 were decreased, but the reduction in APD-50 was more pronounced. The APD-shortening effect of bimoclomol was significantly reduced in the presence of 20 nM charybdotoxin (inhibitor of the Ca-dependent K current) or 0.5 mM anthracene-9-carboxylic acid (inhibitor of the Ca-dependent Cl current) or 1 µM glibenclamide (inhibitor of the ATP-sensitive K current). In the presence of anthracene-9-carboxylic acid, APD-90 was lengthened by bimoclomol. The APD-shortening effect of bimoclomol was also partially antagonized by chelation of intracellular Ca2+ by application of the cell permeant form of BAPTA, or when using 10 mM EGTA-containing patch pipettes to record action potentials. The \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot V$$\end{document}max-depressant effect of bimoclomol was not affected by charybdotoxin, anthracene-9-carboxylic acid, glibenclamide, or BAPTA load.In voltage clamped cardiomyocytes bimoclomol (100 µM) had no effect on the amplitude of ICa, but decreased significantly the inactivation time constant of ICa (from 19.8±1.6 ms to 16.8±1.2 ms at 0 mV). Bimoclomol also decreased significantly the amplitude of IK1 (from –20.5±1.1 pA/pF to –16.6±0.8 pA/pF at –135 mV), causing reduction in slope of the negative branch of the I-V curve. At positive potentials, however, bimoclomol increased outward current. The bimoclomol-induced current, therefore, was studied in the presence of BaCl2, when IK1 current was blocked. The bimoclomol-induced current had a reversal potential close to –90 mV. Bimoclomol (100 µM) had no effect on the amplitude or kinetic properties of the transient outward K current (Ito) and the delayed rectifier K current (IK).It is concluded that bimoclomol exerts both Ca-independent (inhibition of INa and IK1, activation of the ATP-sensitive K current) and Ca-dependent effects (mediated by Ca-activated Cl and probably K currents) in canine ventricular myocytes. |
18 | ″ | schema:genre | article |
19 | ″ | schema:isAccessibleForFree | false |
20 | ″ | schema:isPartOf | N07fa0bfc59894316b254e712730dd41b |
21 | ″ | ″ | N915d7430656c4f768ee9879d630d045f |
22 | ″ | ″ | sg:journal.1015404 |
23 | ″ | schema:keywords | APD |
24 | ″ | ″ | APD 90 |
25 | ″ | ″ | APD-50 |
26 | ″ | ″ | BAPTA |
27 | ″ | ″ | BaCl2 |
28 | ″ | ″ | Ca |
29 | ″ | ″ | Ca2 |
30 | ″ | ″ | ICA |
31 | ″ | ″ | IK1 |
32 | ″ | ″ | IK1 current |
33 | ″ | ″ | acid |
34 | ″ | ″ | action potential duration |
35 | ″ | ″ | action potentials |
36 | ″ | ″ | amplitude |
37 | ″ | ″ | amplitude of ICa |
38 | ″ | ″ | amplitude of IK1 |
39 | ″ | ″ | anthracene-9-carboxylic acid |
40 | ″ | ″ | applications |
41 | ″ | ″ | bimoclomol |
42 | ″ | ″ | branches |
43 | ″ | ″ | canine ventricular cardiomyocytes |
44 | ″ | ″ | canine ventricular myocytes |
45 | ″ | ″ | cardiomyocytes |
46 | ″ | ″ | cell-permeant form |
47 | ″ | ″ | charybdotoxin |
48 | ″ | ″ | chelation |
49 | ″ | ″ | clamp technique |
50 | ″ | ″ | coinducer |
51 | ″ | ″ | concentration-dependent effects |
52 | ″ | ″ | concentration-dependent manner |
53 | ″ | ″ | conventional microelectrodes |
54 | ″ | ″ | current |
55 | ″ | ″ | curves |
56 | ″ | ″ | depolarization |
57 | ″ | ″ | depressant effect |
58 | ″ | ″ | drug-free medium |
59 | ″ | ″ | duration |
60 | ″ | ″ | effect |
61 | ″ | ″ | effect of bimoclomol |
62 | ″ | ″ | electrophysiological effects |
63 | ″ | ″ | exerts |
64 | ″ | ″ | form |
65 | ″ | ″ | glibenclamide |
66 | ″ | ″ | inactivation time |
67 | ″ | ″ | intracellular Ca2 |
68 | ″ | ″ | ionic currents |
69 | ″ | ″ | kinetic properties |
70 | ″ | ″ | levels |
71 | ″ | ″ | levels of repolarization |
72 | ″ | ″ | load |
73 | ″ | ″ | manner |
74 | ″ | ″ | maximum velocity |
75 | ″ | ″ | medium |
76 | ″ | ″ | microelectrodes |
77 | ″ | ″ | myocytes |
78 | ″ | ″ | nM charybdotoxin |
79 | ″ | ″ | negative branch |
80 | ″ | ″ | novel heat shock protein coinducer |
81 | ″ | ″ | parameters |
82 | ″ | ″ | patches |
83 | ″ | ″ | period |
84 | ″ | ″ | permeant form |
85 | ″ | ″ | positive potentials |
86 | ″ | ″ | potential |
87 | ″ | ″ | potential duration |
88 | ″ | ″ | presence |
89 | ″ | ″ | presence of BaCl2 |
90 | ″ | ″ | properties |
91 | ″ | ″ | rectifier K |
92 | ″ | ″ | reduction |
93 | ″ | ″ | repolarization |
94 | ″ | ″ | slope |
95 | ″ | ″ | technique |
96 | ″ | ″ | time |
97 | ″ | ″ | transient outward K |
98 | ″ | ″ | transmembrane ionic currents |
99 | ″ | ″ | velocity |
100 | ″ | ″ | ventricular cardiomyocytes |
101 | ″ | ″ | ventricular myocytes |
102 | ″ | ″ | voltage |
103 | ″ | ″ | voltage-clamp technique |
104 | ″ | ″ | washout |
105 | ″ | ″ | whole-cell voltage-clamp technique |
106 | ″ | schema:name | Electrophysiological effects of bimoclomol in canine ventricular myocytes |
107 | ″ | schema:pagination | 303-310 |
108 | ″ | schema:productId | N8714b4e0de9e4e10b016407fc2c1c53a |
109 | ″ | ″ | Na9efba0faa124c7b91818d6dd9891ad7 |
110 | ″ | ″ | Nd578581493de4902acfb4c62fdc7a9ca |
111 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1020774950 |
112 | ″ | ″ | https://doi.org/10.1007/s002109900164 |
113 | ″ | schema:sdDatePublished | 2022-08-04T16:54 |
114 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
115 | ″ | schema:sdPublisher | N8920538b488a4ce299601dd77a7ca30a |
116 | ″ | schema:url | https://doi.org/10.1007/s002109900164 |
117 | ″ | sgo:license | sg:explorer/license/ |
118 | ″ | sgo:sdDataset | articles |
119 | ″ | rdf:type | schema:ScholarlyArticle |
120 | N00cec2a7e73848d1acb2177cdc94a070 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
121 | ″ | schema:name | Action Potentials |
122 | ″ | rdf:type | schema:DefinedTerm |
123 | N07fa0bfc59894316b254e712730dd41b | schema:volumeNumber | 361 |
124 | ″ | rdf:type | schema:PublicationVolume |
125 | N0f1f25e268f54bf290077fe93a425f4f | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
126 | ″ | schema:name | Animals |
127 | ″ | rdf:type | schema:DefinedTerm |
128 | N2b82e64fb4d9402dbca7fbe197ee08f3 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
129 | ″ | schema:name | Heart Ventricles |
130 | ″ | rdf:type | schema:DefinedTerm |
131 | N52764fba07d04cf7bc29c1930812d6c8 | rdf:first | sg:person.01206027354.83 |
132 | ″ | rdf:rest | Nf03a4d2239584a638b6bb8e390705f2f |
133 | N572e78331787406fae3560819d4bd6e3 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
134 | ″ | schema:name | Imides |
135 | ″ | rdf:type | schema:DefinedTerm |
136 | N740d6b8d888e48e092fddc538127bfc5 | rdf:first | sg:person.01367543223.37 |
137 | ″ | rdf:rest | Nf45f4a72a16c48b08081cd3861298677 |
138 | N7bc5a5767bd243e7ada125b9f41c733b | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
139 | ″ | schema:name | Ventricular Function |
140 | ″ | rdf:type | schema:DefinedTerm |
141 | N7cb01306ca984cd99955c24edcca5cda | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
142 | ″ | schema:name | Electrophysiology |
143 | ″ | rdf:type | schema:DefinedTerm |
144 | N81f1db4473414cc3a66375e3b0cdf310 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
145 | ″ | schema:name | Pyridines |
146 | ″ | rdf:type | schema:DefinedTerm |
147 | N86242483eed741fb8d97adfd5aed7c21 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
148 | ″ | schema:name | Electric Stimulation |
149 | ″ | rdf:type | schema:DefinedTerm |
150 | N8714b4e0de9e4e10b016407fc2c1c53a | schema:name | dimensions_id |
151 | ″ | schema:value | pub.1020774950 |
152 | ″ | rdf:type | schema:PropertyValue |
153 | N8920538b488a4ce299601dd77a7ca30a | schema:name | Springer Nature - SN SciGraph project |
154 | ″ | rdf:type | schema:Organization |
155 | N915d7430656c4f768ee9879d630d045f | schema:issueNumber | 3 |
156 | ″ | rdf:type | schema:PublicationIssue |
157 | Na102ad04332642a49692fbdf046bd3a5 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
158 | ″ | schema:name | Cells, Cultured |
159 | ″ | rdf:type | schema:DefinedTerm |
160 | Na9efba0faa124c7b91818d6dd9891ad7 | schema:name | pubmed_id |
161 | ″ | schema:value | 10731044 |
162 | ″ | rdf:type | schema:PropertyValue |
163 | Ncb31e842b0b74c1fa9fd16e1d58cae16 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
164 | ″ | schema:name | Dogs |
165 | ″ | rdf:type | schema:DefinedTerm |
166 | Nd578581493de4902acfb4c62fdc7a9ca | schema:name | doi |
167 | ″ | schema:value | 10.1007/s002109900164 |
168 | ″ | rdf:type | schema:PropertyValue |
169 | Nd85d17cc730b4146b028962de07c672f | rdf:first | sg:person.01075513761.41 |
170 | ″ | rdf:rest | Nf30ece6eb2b040e1979765797fc2af46 |
171 | Nf03a4d2239584a638b6bb8e390705f2f | rdf:first | sg:person.0772313221.04 |
172 | ″ | rdf:rest | N740d6b8d888e48e092fddc538127bfc5 |
173 | Nf30ece6eb2b040e1979765797fc2af46 | rdf:first | sg:person.0724365203.35 |
174 | ″ | rdf:rest | rdf:nil |
175 | Nf45f4a72a16c48b08081cd3861298677 | rdf:first | sg:person.01072716562.79 |
176 | ″ | rdf:rest | Nd85d17cc730b4146b028962de07c672f |
177 | Nf4a56cffa420460f946d1e9e8752d54f | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
178 | ″ | schema:name | Dose-Response Relationship, Drug |
179 | ″ | rdf:type | schema:DefinedTerm |
180 | anzsrc-for:11 | schema:inDefinedTermSet | anzsrc-for: |
181 | ″ | schema:name | Medical and Health Sciences |
182 | ″ | rdf:type | schema:DefinedTerm |
183 | anzsrc-for:1109 | schema:inDefinedTermSet | anzsrc-for: |
184 | ″ | schema:name | Neurosciences |
185 | ″ | rdf:type | schema:DefinedTerm |
186 | sg:journal.1015404 | schema:issn | 0028-1298 |
187 | ″ | ″ | 1432-1912 |
188 | ″ | schema:name | Naunyn-Schmiedeberg's Archives of Pharmacology |
189 | ″ | schema:publisher | Springer Nature |
190 | ″ | rdf:type | schema:Periodical |
191 | sg:person.01072716562.79 | schema:affiliation | grid-institutes:grid.7122.6 |
192 | ″ | schema:familyName | Körtvély |
193 | ″ | schema:givenName | Å. |
194 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01072716562.79 |
195 | ″ | rdf:type | schema:Person |
196 | sg:person.01075513761.41 | schema:affiliation | grid-institutes:None |
197 | ″ | schema:familyName | Jednákovits |
198 | ″ | schema:givenName | A. |
199 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075513761.41 |
200 | ″ | rdf:type | schema:Person |
201 | sg:person.01206027354.83 | schema:affiliation | grid-institutes:grid.7122.6 |
202 | ″ | schema:familyName | Magyar |
203 | ″ | schema:givenName | J. |
204 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206027354.83 |
205 | ″ | rdf:type | schema:Person |
206 | sg:person.01367543223.37 | schema:affiliation | grid-institutes:grid.7122.6 |
207 | ″ | schema:familyName | Szigligeti |
208 | ″ | schema:givenName | P. |
209 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01367543223.37 |
210 | ″ | rdf:type | schema:Person |
211 | sg:person.0724365203.35 | schema:affiliation | grid-institutes:grid.7122.6 |
212 | ″ | schema:familyName | Nánási |
213 | ″ | schema:givenName | P.P. |
214 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724365203.35 |
215 | ″ | rdf:type | schema:Person |
216 | sg:person.0772313221.04 | schema:affiliation | grid-institutes:grid.7122.6 |
217 | ″ | schema:familyName | Bányász |
218 | ″ | schema:givenName | T. |
219 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772313221.04 |
220 | ″ | rdf:type | schema:Person |
221 | grid-institutes:None | schema:alternateName | Biorex Research and Development Co., P.O. Box 348, 8201 Veszprém-Szabadságpuszta, Hungary |
222 | ″ | schema:name | Biorex Research and Development Co., P.O. Box 348, 8201 Veszprém-Szabadságpuszta, Hungary |
223 | ″ | rdf:type | schema:Organization |
224 | grid-institutes:grid.7122.6 | schema:alternateName | Department of Physiology, University Medical School of Debrecen, P.O. Box 22, 4012 Debrecen, Hungary |
225 | ″ | schema:name | Department of Physiology, University Medical School of Debrecen, P.O. Box 22, 4012 Debrecen, Hungary |
226 | ″ | rdf:type | schema:Organization |