Electrophysiological effects of bimoclomol in canine ventricular myocytes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-03

AUTHORS

J. Magyar, T. Bányász, P. Szigligeti, Å. Körtvély, A. Jednákovits, P.P. Nánási

ABSTRACT

. Concentration-dependent effects of bimoclomol, a novel heat shock protein (HSP) coinducer, were studied on the parameters of action potential and transmembrane ionic currents in enzymatically dispersed canine ventricular cardiomyocytes using conventional microelectrode and whole cell voltage clamp techniques. Bimoclomol (10–100 µM) decreased the maximum velocity of depolarization (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot V$$\end{document}max) and amplitude of action potentials in a concentration-dependent manner. These effects were fully reversible after a 5-min period of washout in drug-free medium. Action potential duration measured at 50% or 90% level of repolarization (APD-50 and APD-90, respectively) was markedly shortened by bimoclomol. Both APD-50 and APD-90 were decreased, but the reduction in APD-50 was more pronounced. The APD-shortening effect of bimoclomol was significantly reduced in the presence of 20 nM charybdotoxin (inhibitor of the Ca-dependent K current) or 0.5 mM anthracene-9-carboxylic acid (inhibitor of the Ca-dependent Cl current) or 1 µM glibenclamide (inhibitor of the ATP-sensitive K current). In the presence of anthracene-9-carboxylic acid, APD-90 was lengthened by bimoclomol. The APD-shortening effect of bimoclomol was also partially antagonized by chelation of intracellular Ca2+ by application of the cell permeant form of BAPTA, or when using 10 mM EGTA-containing patch pipettes to record action potentials. The \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot V$$\end{document}max-depressant effect of bimoclomol was not affected by charybdotoxin, anthracene-9-carboxylic acid, glibenclamide, or BAPTA load.In voltage clamped cardiomyocytes bimoclomol (100 µM) had no effect on the amplitude of ICa, but decreased significantly the inactivation time constant of ICa (from 19.8±1.6 ms to 16.8±1.2 ms at 0 mV). Bimoclomol also decreased significantly the amplitude of IK1 (from –20.5±1.1 pA/pF to –16.6±0.8 pA/pF at –135 mV), causing reduction in slope of the negative branch of the I-V curve. At positive potentials, however, bimoclomol increased outward current. The bimoclomol-induced current, therefore, was studied in the presence of BaCl2, when IK1 current was blocked. The bimoclomol-induced current had a reversal potential close to –90 mV. Bimoclomol (100 µM) had no effect on the amplitude or kinetic properties of the transient outward K current (Ito) and the delayed rectifier K current (IK).It is concluded that bimoclomol exerts both Ca-independent (inhibition of INa and IK1, activation of the ATP-sensitive K current) and Ca-dependent effects (mediated by Ca-activated Cl and probably K currents) in canine ventricular myocytes. More... »

PAGES

303-310

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s002109900164

DOI

http://dx.doi.org/10.1007/s002109900164

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020774950

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/10731044


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Action Potentials", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cells, Cultured", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Dogs", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Dose-Response Relationship, Drug", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electric Stimulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electrophysiology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Heart Ventricles", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Imides", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pyridines", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ventricular Function", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Physiology, University Medical School of Debrecen, P.O. Box 22, 4012 Debrecen, Hungary", 
          "id": "http://www.grid.ac/institutes/grid.7122.6", 
          "name": [
            "Department of Physiology, University Medical School of Debrecen, P.O. Box 22, 4012 Debrecen, Hungary"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Magyar", 
        "givenName": "J.", 
        "id": "sg:person.01206027354.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206027354.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physiology, University Medical School of Debrecen, P.O. Box 22, 4012 Debrecen, Hungary", 
          "id": "http://www.grid.ac/institutes/grid.7122.6", 
          "name": [
            "Department of Physiology, University Medical School of Debrecen, P.O. Box 22, 4012 Debrecen, Hungary"
          ], 
          "type": "Organization"
        }, 
        "familyName": "B\u00e1ny\u00e1sz", 
        "givenName": "T.", 
        "id": "sg:person.0772313221.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772313221.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physiology, University Medical School of Debrecen, P.O. Box 22, 4012 Debrecen, Hungary", 
          "id": "http://www.grid.ac/institutes/grid.7122.6", 
          "name": [
            "Department of Physiology, University Medical School of Debrecen, P.O. Box 22, 4012 Debrecen, Hungary"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Szigligeti", 
        "givenName": "P.", 
        "id": "sg:person.01367543223.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01367543223.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physiology, University Medical School of Debrecen, P.O. Box 22, 4012 Debrecen, Hungary", 
          "id": "http://www.grid.ac/institutes/grid.7122.6", 
          "name": [
            "Department of Physiology, University Medical School of Debrecen, P.O. Box 22, 4012 Debrecen, Hungary"
          ], 
          "type": "Organization"
        }, 
        "familyName": "K\u00f6rtv\u00e9ly", 
        "givenName": "\u00c5.", 
        "id": "sg:person.01072716562.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01072716562.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biorex Research and Development Co., P.O. Box 348, 8201 Veszpr\u00e9m-Szabads\u00e1gpuszta, Hungary", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Biorex Research and Development Co., P.O. Box 348, 8201 Veszpr\u00e9m-Szabads\u00e1gpuszta, Hungary"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jedn\u00e1kovits", 
        "givenName": "A.", 
        "id": "sg:person.01075513761.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075513761.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physiology, University Medical School of Debrecen, P.O. Box 22, 4012 Debrecen, Hungary", 
          "id": "http://www.grid.ac/institutes/grid.7122.6", 
          "name": [
            "Department of Physiology, University Medical School of Debrecen, P.O. Box 22, 4012 Debrecen, Hungary"
          ], 
          "type": "Organization"
        }, 
        "familyName": "N\u00e1n\u00e1si", 
        "givenName": "P.P.", 
        "id": "sg:person.0724365203.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724365203.35"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2000-03", 
    "datePublishedReg": "2000-03-01", 
    "description": "Abstract. Concentration-dependent effects of bimoclomol, a novel heat shock protein (HSP) coinducer, were studied on the parameters of action potential and transmembrane ionic currents in enzymatically dispersed canine ventricular cardiomyocytes using conventional microelectrode and whole cell voltage clamp techniques. Bimoclomol (10\u2013100\u00a0\u00b5M) decreased the maximum velocity of depolarization (\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\dot V$$\\end{document}max) and amplitude of action potentials in a concentration-dependent manner. These effects were fully reversible after a 5-min period of washout in drug-free medium. Action potential duration measured at 50% or 90% level of repolarization (APD-50 and APD-90, respectively) was markedly shortened by bimoclomol. Both APD-50 and APD-90 were decreased, but the reduction in APD-50 was more pronounced. The APD-shortening effect of bimoclomol was significantly reduced in the presence of 20\u00a0nM charybdotoxin (inhibitor of the Ca-dependent K current) or 0.5\u00a0mM anthracene-9-carboxylic acid (inhibitor of the Ca-dependent Cl current) or 1\u00a0\u00b5M glibenclamide (inhibitor of the ATP-sensitive K current). In the presence of anthracene-9-carboxylic acid, APD-90 was lengthened by bimoclomol. The APD-shortening effect of bimoclomol was also partially antagonized by chelation of intracellular Ca2+ by application of the cell permeant form of BAPTA, or when using 10\u00a0mM EGTA-containing patch pipettes to record action potentials. The \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\dot V$$\\end{document}max-depressant effect of bimoclomol was not affected by charybdotoxin, anthracene-9-carboxylic acid, glibenclamide, or BAPTA load.In voltage clamped cardiomyocytes bimoclomol (100\u00a0\u00b5M) had no effect on the amplitude of ICa, but decreased significantly the inactivation time constant of ICa (from 19.8\u00b11.6\u00a0ms to 16.8\u00b11.2\u00a0ms at 0\u00a0mV). Bimoclomol also decreased significantly the amplitude of IK1 (from \u201320.5\u00b11.1 pA/pF to \u201316.6\u00b10.8 pA/pF at \u2013135\u00a0mV), causing reduction in slope of the negative branch of the I-V curve. At positive potentials, however, bimoclomol increased outward current. The bimoclomol-induced current, therefore, was studied in the presence of BaCl2, when IK1 current was blocked. The bimoclomol-induced current had a reversal potential close to \u201390\u00a0mV. Bimoclomol (100\u00a0\u00b5M) had no effect on the amplitude or kinetic properties of the transient outward K current (Ito) and the delayed rectifier K current (IK).It is concluded that bimoclomol exerts both Ca-independent (inhibition of INa and IK1, activation of the ATP-sensitive K current) and Ca-dependent effects (mediated by Ca-activated Cl and probably K currents) in canine ventricular myocytes.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s002109900164", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1015404", 
        "issn": [
          "0028-1298", 
          "1432-1912"
        ], 
        "name": "Naunyn-Schmiedeberg's Archives of Pharmacology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "361"
      }
    ], 
    "keywords": [
      "effect of bimoclomol", 
      "canine ventricular myocytes", 
      "action potentials", 
      "APD-50", 
      "anthracene-9-carboxylic acid", 
      "APD 90", 
      "novel heat shock protein coinducer", 
      "ventricular myocytes", 
      "whole-cell voltage-clamp technique", 
      "amplitude of IK1", 
      "levels of repolarization", 
      "action potential duration", 
      "amplitude of ICa", 
      "canine ventricular cardiomyocytes", 
      "cell-permeant form", 
      "voltage-clamp technique", 
      "drug-free medium", 
      "transient outward K", 
      "concentration-dependent manner", 
      "nM charybdotoxin", 
      "depressant effect", 
      "electrophysiological effects", 
      "concentration-dependent effects", 
      "bimoclomol", 
      "IK1 current", 
      "potential duration", 
      "clamp technique", 
      "intracellular Ca2", 
      "ventricular cardiomyocytes", 
      "conventional microelectrodes", 
      "rectifier K", 
      "permeant form", 
      "transmembrane ionic currents", 
      "glibenclamide", 
      "charybdotoxin", 
      "myocytes", 
      "ionic currents", 
      "ICA", 
      "inactivation time", 
      "presence of BaCl2", 
      "repolarization", 
      "APD", 
      "BAPTA", 
      "IK1", 
      "washout", 
      "cardiomyocytes", 
      "effect", 
      "depolarization", 
      "duration", 
      "presence", 
      "acid", 
      "exerts", 
      "reduction", 
      "Ca2", 
      "potential", 
      "maximum velocity", 
      "period", 
      "levels", 
      "coinducer", 
      "microelectrodes", 
      "amplitude", 
      "chelation", 
      "manner", 
      "BaCl2", 
      "positive potentials", 
      "kinetic properties", 
      "time", 
      "curves", 
      "patches", 
      "branches", 
      "form", 
      "technique", 
      "medium", 
      "Ca", 
      "current", 
      "parameters", 
      "load", 
      "velocity", 
      "slope", 
      "properties", 
      "applications", 
      "voltage", 
      "negative branch"
    ], 
    "name": "Electrophysiological effects of bimoclomol in canine ventricular myocytes", 
    "pagination": "303-310", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020774950"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s002109900164"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "10731044"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s002109900164", 
      "https://app.dimensions.ai/details/publication/pub.1020774950"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T16:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_347.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s002109900164"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s002109900164'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s002109900164'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s002109900164'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s002109900164'


 

This table displays all metadata directly associated to this object as RDF triples.

226 TRIPLES      20 PREDICATES      120 URIs      112 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s002109900164 schema:about N00cec2a7e73848d1acb2177cdc94a070
2 N0f1f25e268f54bf290077fe93a425f4f
3 N2b82e64fb4d9402dbca7fbe197ee08f3
4 N572e78331787406fae3560819d4bd6e3
5 N7bc5a5767bd243e7ada125b9f41c733b
6 N7cb01306ca984cd99955c24edcca5cda
7 N81f1db4473414cc3a66375e3b0cdf310
8 N86242483eed741fb8d97adfd5aed7c21
9 Na102ad04332642a49692fbdf046bd3a5
10 Ncb31e842b0b74c1fa9fd16e1d58cae16
11 Nf4a56cffa420460f946d1e9e8752d54f
12 anzsrc-for:11
13 anzsrc-for:1109
14 schema:author N52764fba07d04cf7bc29c1930812d6c8
15 schema:datePublished 2000-03
16 schema:datePublishedReg 2000-03-01
17 schema:description Abstract. Concentration-dependent effects of bimoclomol, a novel heat shock protein (HSP) coinducer, were studied on the parameters of action potential and transmembrane ionic currents in enzymatically dispersed canine ventricular cardiomyocytes using conventional microelectrode and whole cell voltage clamp techniques. Bimoclomol (10–100 µM) decreased the maximum velocity of depolarization (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot V$$\end{document}max) and amplitude of action potentials in a concentration-dependent manner. These effects were fully reversible after a 5-min period of washout in drug-free medium. Action potential duration measured at 50% or 90% level of repolarization (APD-50 and APD-90, respectively) was markedly shortened by bimoclomol. Both APD-50 and APD-90 were decreased, but the reduction in APD-50 was more pronounced. The APD-shortening effect of bimoclomol was significantly reduced in the presence of 20 nM charybdotoxin (inhibitor of the Ca-dependent K current) or 0.5 mM anthracene-9-carboxylic acid (inhibitor of the Ca-dependent Cl current) or 1 µM glibenclamide (inhibitor of the ATP-sensitive K current). In the presence of anthracene-9-carboxylic acid, APD-90 was lengthened by bimoclomol. The APD-shortening effect of bimoclomol was also partially antagonized by chelation of intracellular Ca2+ by application of the cell permeant form of BAPTA, or when using 10 mM EGTA-containing patch pipettes to record action potentials. The \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot V$$\end{document}max-depressant effect of bimoclomol was not affected by charybdotoxin, anthracene-9-carboxylic acid, glibenclamide, or BAPTA load.In voltage clamped cardiomyocytes bimoclomol (100 µM) had no effect on the amplitude of ICa, but decreased significantly the inactivation time constant of ICa (from 19.8±1.6 ms to 16.8±1.2 ms at 0 mV). Bimoclomol also decreased significantly the amplitude of IK1 (from –20.5±1.1 pA/pF to –16.6±0.8 pA/pF at –135 mV), causing reduction in slope of the negative branch of the I-V curve. At positive potentials, however, bimoclomol increased outward current. The bimoclomol-induced current, therefore, was studied in the presence of BaCl2, when IK1 current was blocked. The bimoclomol-induced current had a reversal potential close to –90 mV. Bimoclomol (100 µM) had no effect on the amplitude or kinetic properties of the transient outward K current (Ito) and the delayed rectifier K current (IK).It is concluded that bimoclomol exerts both Ca-independent (inhibition of INa and IK1, activation of the ATP-sensitive K current) and Ca-dependent effects (mediated by Ca-activated Cl and probably K currents) in canine ventricular myocytes.
18 schema:genre article
19 schema:isAccessibleForFree false
20 schema:isPartOf N07fa0bfc59894316b254e712730dd41b
21 N915d7430656c4f768ee9879d630d045f
22 sg:journal.1015404
23 schema:keywords APD
24 APD 90
25 APD-50
26 BAPTA
27 BaCl2
28 Ca
29 Ca2
30 ICA
31 IK1
32 IK1 current
33 acid
34 action potential duration
35 action potentials
36 amplitude
37 amplitude of ICa
38 amplitude of IK1
39 anthracene-9-carboxylic acid
40 applications
41 bimoclomol
42 branches
43 canine ventricular cardiomyocytes
44 canine ventricular myocytes
45 cardiomyocytes
46 cell-permeant form
47 charybdotoxin
48 chelation
49 clamp technique
50 coinducer
51 concentration-dependent effects
52 concentration-dependent manner
53 conventional microelectrodes
54 current
55 curves
56 depolarization
57 depressant effect
58 drug-free medium
59 duration
60 effect
61 effect of bimoclomol
62 electrophysiological effects
63 exerts
64 form
65 glibenclamide
66 inactivation time
67 intracellular Ca2
68 ionic currents
69 kinetic properties
70 levels
71 levels of repolarization
72 load
73 manner
74 maximum velocity
75 medium
76 microelectrodes
77 myocytes
78 nM charybdotoxin
79 negative branch
80 novel heat shock protein coinducer
81 parameters
82 patches
83 period
84 permeant form
85 positive potentials
86 potential
87 potential duration
88 presence
89 presence of BaCl2
90 properties
91 rectifier K
92 reduction
93 repolarization
94 slope
95 technique
96 time
97 transient outward K
98 transmembrane ionic currents
99 velocity
100 ventricular cardiomyocytes
101 ventricular myocytes
102 voltage
103 voltage-clamp technique
104 washout
105 whole-cell voltage-clamp technique
106 schema:name Electrophysiological effects of bimoclomol in canine ventricular myocytes
107 schema:pagination 303-310
108 schema:productId N8714b4e0de9e4e10b016407fc2c1c53a
109 Na9efba0faa124c7b91818d6dd9891ad7
110 Nd578581493de4902acfb4c62fdc7a9ca
111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020774950
112 https://doi.org/10.1007/s002109900164
113 schema:sdDatePublished 2022-08-04T16:54
114 schema:sdLicense https://scigraph.springernature.com/explorer/license/
115 schema:sdPublisher N8920538b488a4ce299601dd77a7ca30a
116 schema:url https://doi.org/10.1007/s002109900164
117 sgo:license sg:explorer/license/
118 sgo:sdDataset articles
119 rdf:type schema:ScholarlyArticle
120 N00cec2a7e73848d1acb2177cdc94a070 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Action Potentials
122 rdf:type schema:DefinedTerm
123 N07fa0bfc59894316b254e712730dd41b schema:volumeNumber 361
124 rdf:type schema:PublicationVolume
125 N0f1f25e268f54bf290077fe93a425f4f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Animals
127 rdf:type schema:DefinedTerm
128 N2b82e64fb4d9402dbca7fbe197ee08f3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Heart Ventricles
130 rdf:type schema:DefinedTerm
131 N52764fba07d04cf7bc29c1930812d6c8 rdf:first sg:person.01206027354.83
132 rdf:rest Nf03a4d2239584a638b6bb8e390705f2f
133 N572e78331787406fae3560819d4bd6e3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Imides
135 rdf:type schema:DefinedTerm
136 N740d6b8d888e48e092fddc538127bfc5 rdf:first sg:person.01367543223.37
137 rdf:rest Nf45f4a72a16c48b08081cd3861298677
138 N7bc5a5767bd243e7ada125b9f41c733b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Ventricular Function
140 rdf:type schema:DefinedTerm
141 N7cb01306ca984cd99955c24edcca5cda schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Electrophysiology
143 rdf:type schema:DefinedTerm
144 N81f1db4473414cc3a66375e3b0cdf310 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Pyridines
146 rdf:type schema:DefinedTerm
147 N86242483eed741fb8d97adfd5aed7c21 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Electric Stimulation
149 rdf:type schema:DefinedTerm
150 N8714b4e0de9e4e10b016407fc2c1c53a schema:name dimensions_id
151 schema:value pub.1020774950
152 rdf:type schema:PropertyValue
153 N8920538b488a4ce299601dd77a7ca30a schema:name Springer Nature - SN SciGraph project
154 rdf:type schema:Organization
155 N915d7430656c4f768ee9879d630d045f schema:issueNumber 3
156 rdf:type schema:PublicationIssue
157 Na102ad04332642a49692fbdf046bd3a5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Cells, Cultured
159 rdf:type schema:DefinedTerm
160 Na9efba0faa124c7b91818d6dd9891ad7 schema:name pubmed_id
161 schema:value 10731044
162 rdf:type schema:PropertyValue
163 Ncb31e842b0b74c1fa9fd16e1d58cae16 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Dogs
165 rdf:type schema:DefinedTerm
166 Nd578581493de4902acfb4c62fdc7a9ca schema:name doi
167 schema:value 10.1007/s002109900164
168 rdf:type schema:PropertyValue
169 Nd85d17cc730b4146b028962de07c672f rdf:first sg:person.01075513761.41
170 rdf:rest Nf30ece6eb2b040e1979765797fc2af46
171 Nf03a4d2239584a638b6bb8e390705f2f rdf:first sg:person.0772313221.04
172 rdf:rest N740d6b8d888e48e092fddc538127bfc5
173 Nf30ece6eb2b040e1979765797fc2af46 rdf:first sg:person.0724365203.35
174 rdf:rest rdf:nil
175 Nf45f4a72a16c48b08081cd3861298677 rdf:first sg:person.01072716562.79
176 rdf:rest Nd85d17cc730b4146b028962de07c672f
177 Nf4a56cffa420460f946d1e9e8752d54f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
178 schema:name Dose-Response Relationship, Drug
179 rdf:type schema:DefinedTerm
180 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
181 schema:name Medical and Health Sciences
182 rdf:type schema:DefinedTerm
183 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
184 schema:name Neurosciences
185 rdf:type schema:DefinedTerm
186 sg:journal.1015404 schema:issn 0028-1298
187 1432-1912
188 schema:name Naunyn-Schmiedeberg's Archives of Pharmacology
189 schema:publisher Springer Nature
190 rdf:type schema:Periodical
191 sg:person.01072716562.79 schema:affiliation grid-institutes:grid.7122.6
192 schema:familyName Körtvély
193 schema:givenName Å.
194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01072716562.79
195 rdf:type schema:Person
196 sg:person.01075513761.41 schema:affiliation grid-institutes:None
197 schema:familyName Jednákovits
198 schema:givenName A.
199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075513761.41
200 rdf:type schema:Person
201 sg:person.01206027354.83 schema:affiliation grid-institutes:grid.7122.6
202 schema:familyName Magyar
203 schema:givenName J.
204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206027354.83
205 rdf:type schema:Person
206 sg:person.01367543223.37 schema:affiliation grid-institutes:grid.7122.6
207 schema:familyName Szigligeti
208 schema:givenName P.
209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01367543223.37
210 rdf:type schema:Person
211 sg:person.0724365203.35 schema:affiliation grid-institutes:grid.7122.6
212 schema:familyName Nánási
213 schema:givenName P.P.
214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724365203.35
215 rdf:type schema:Person
216 sg:person.0772313221.04 schema:affiliation grid-institutes:grid.7122.6
217 schema:familyName Bányász
218 schema:givenName T.
219 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772313221.04
220 rdf:type schema:Person
221 grid-institutes:None schema:alternateName Biorex Research and Development Co., P.O. Box 348, 8201 Veszprém-Szabadságpuszta, Hungary
222 schema:name Biorex Research and Development Co., P.O. Box 348, 8201 Veszprém-Szabadságpuszta, Hungary
223 rdf:type schema:Organization
224 grid-institutes:grid.7122.6 schema:alternateName Department of Physiology, University Medical School of Debrecen, P.O. Box 22, 4012 Debrecen, Hungary
225 schema:name Department of Physiology, University Medical School of Debrecen, P.O. Box 22, 4012 Debrecen, Hungary
226 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...