Ontology type: schema:ScholarlyArticle Open Access: True
2022-03-18
AUTHORSAlexander J. Izzo, Edgar Lee Stout
ABSTRACTIt is shown that a simple closed curve in Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}^n$$\end{document} that is a uniform limit of rectifiable simple closed curves each of which has nontrivial polynomial hull has itself nontrivial polynomial hull. In case the limit curve is rectifiable, the hull of the limit is shown to be the limit of the hulls. It is also shown that every rectifiable simple closed curve in Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}^n$$\end{document}, n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 2$$\end{document}, can be approximated in total variation norm by a polynomially convex, rectifiable simple closed curve that coincides with the original curve except on an arbitrarily small segment. As a corollary, it is shown that every rectifiable arc in Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}^n$$\end{document}, n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 2$$\end{document}, is contained in a polynomially convex, rectifiable simple closed curve. More... »
PAGES1-16
http://scigraph.springernature.com/pub.10.1007/s00209-022-02972-2
DOIhttp://dx.doi.org/10.1007/s00209-022-02972-2
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1146379934
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Mathematics and Statistics, Bowling Green State University, 43403, Bowling Green, OH, USA",
"id": "http://www.grid.ac/institutes/grid.253248.a",
"name": [
"Department of Mathematics and Statistics, Bowling Green State University, 43403, Bowling Green, OH, USA"
],
"type": "Organization"
},
"familyName": "Izzo",
"givenName": "Alexander J.",
"id": "sg:person.011462624533.85",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011462624533.85"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Mathematics, University of Washington, 98195, Seattle, WA, USA",
"id": "http://www.grid.ac/institutes/grid.34477.33",
"name": [
"Department of Mathematics, University of Washington, 98195, Seattle, WA, USA"
],
"type": "Organization"
},
"familyName": "Stout",
"givenName": "Edgar Lee",
"id": "sg:person.012205207751.49",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012205207751.49"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/978-1-4612-4190-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040723300",
"https://doi.org/10.1007/978-1-4612-4190-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01378335",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017968552",
"https://doi.org/10.1007/bf01378335"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-48016-4_26",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007025461",
"https://doi.org/10.1007/978-3-642-48016-4_26"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4684-9449-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048012041",
"https://doi.org/10.1007/978-1-4684-9449-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01450512",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035803905",
"https://doi.org/10.1007/bf01450512"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01232438",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035966561",
"https://doi.org/10.1007/bf01232438"
],
"type": "CreativeWork"
}
],
"datePublished": "2022-03-18",
"datePublishedReg": "2022-03-18",
"description": "It is shown that a simple closed curve in Cn\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\mathbb {C}}^n$$\\end{document} that is a uniform limit of rectifiable simple closed curves each of which has nontrivial polynomial hull has itself nontrivial polynomial hull. In case the limit curve is rectifiable, the hull of the limit is shown to be the limit of the hulls. It is also shown that every rectifiable simple closed curve in Cn\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\mathbb {C}}^n$$\\end{document}, n\u22652\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$n\\ge 2$$\\end{document}, can be approximated in total variation norm by a polynomially convex, rectifiable simple closed curve that coincides with the original curve except on an arbitrarily small segment. As a corollary, it is shown that every rectifiable arc in Cn\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\mathbb {C}}^n$$\\end{document}, n\u22652\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$n\\ge 2$$\\end{document}, is contained in a polynomially convex, rectifiable simple closed curve.",
"genre": "article",
"id": "sg:pub.10.1007/s00209-022-02972-2",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1136443",
"issn": [
"0025-5874",
"1432-1823"
],
"name": "Mathematische Zeitschrift",
"publisher": "Springer Nature",
"type": "Periodical"
}
],
"keywords": [
"curves",
"cases",
"small segment",
"segments",
"limit",
"norms",
"arc",
"uniform limit",
"hull",
"limit curve",
"convex",
"original curve",
"corollary",
"simple closed curve",
"closed curve",
"polynomial hull",
"total variation norm",
"variation norm",
"rectifiable arc",
"convergence"
],
"name": "The convergence of hulls of curves",
"pagination": "1-16",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1146379934"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00209-022-02972-2"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00209-022-02972-2",
"https://app.dimensions.ai/details/publication/pub.1146379934"
],
"sdDataset": "articles",
"sdDatePublished": "2022-06-01T22:24",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_932.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s00209-022-02972-2"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00209-022-02972-2'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00209-022-02972-2'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00209-022-02972-2'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00209-022-02972-2'
This table displays all metadata directly associated to this object as RDF triples.
106 TRIPLES
22 PREDICATES
49 URIs
35 LITERALS
4 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s00209-022-02972-2 | schema:about | anzsrc-for:01 |
2 | ″ | ″ | anzsrc-for:0101 |
3 | ″ | schema:author | Nc277f8e56c194db394f00a912b0c5459 |
4 | ″ | schema:citation | sg:pub.10.1007/978-1-4612-4190-4 |
5 | ″ | ″ | sg:pub.10.1007/978-1-4684-9449-5 |
6 | ″ | ″ | sg:pub.10.1007/978-3-642-48016-4_26 |
7 | ″ | ″ | sg:pub.10.1007/bf01232438 |
8 | ″ | ″ | sg:pub.10.1007/bf01378335 |
9 | ″ | ″ | sg:pub.10.1007/bf01450512 |
10 | ″ | schema:datePublished | 2022-03-18 |
11 | ″ | schema:datePublishedReg | 2022-03-18 |
12 | ″ | schema:description | It is shown that a simple closed curve in Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}^n$$\end{document} that is a uniform limit of rectifiable simple closed curves each of which has nontrivial polynomial hull has itself nontrivial polynomial hull. In case the limit curve is rectifiable, the hull of the limit is shown to be the limit of the hulls. It is also shown that every rectifiable simple closed curve in Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}^n$$\end{document}, n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 2$$\end{document}, can be approximated in total variation norm by a polynomially convex, rectifiable simple closed curve that coincides with the original curve except on an arbitrarily small segment. As a corollary, it is shown that every rectifiable arc in Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}^n$$\end{document}, n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 2$$\end{document}, is contained in a polynomially convex, rectifiable simple closed curve. |
13 | ″ | schema:genre | article |
14 | ″ | schema:inLanguage | en |
15 | ″ | schema:isAccessibleForFree | true |
16 | ″ | schema:isPartOf | sg:journal.1136443 |
17 | ″ | schema:keywords | arc |
18 | ″ | ″ | cases |
19 | ″ | ″ | closed curve |
20 | ″ | ″ | convergence |
21 | ″ | ″ | convex |
22 | ″ | ″ | corollary |
23 | ″ | ″ | curves |
24 | ″ | ″ | hull |
25 | ″ | ″ | limit |
26 | ″ | ″ | limit curve |
27 | ″ | ″ | norms |
28 | ″ | ″ | original curve |
29 | ″ | ″ | polynomial hull |
30 | ″ | ″ | rectifiable arc |
31 | ″ | ″ | segments |
32 | ″ | ″ | simple closed curve |
33 | ″ | ″ | small segment |
34 | ″ | ″ | total variation norm |
35 | ″ | ″ | uniform limit |
36 | ″ | ″ | variation norm |
37 | ″ | schema:name | The convergence of hulls of curves |
38 | ″ | schema:pagination | 1-16 |
39 | ″ | schema:productId | N99ff7e7dd0fe4fbe8e0e7bf1523f7405 |
40 | ″ | ″ | Nfc67624a4dd845b299337109447e7430 |
41 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1146379934 |
42 | ″ | ″ | https://doi.org/10.1007/s00209-022-02972-2 |
43 | ″ | schema:sdDatePublished | 2022-06-01T22:24 |
44 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
45 | ″ | schema:sdPublisher | N1048c0c4685d4c5dae813ab1394409bd |
46 | ″ | schema:url | https://doi.org/10.1007/s00209-022-02972-2 |
47 | ″ | sgo:license | sg:explorer/license/ |
48 | ″ | sgo:sdDataset | articles |
49 | ″ | rdf:type | schema:ScholarlyArticle |
50 | N1048c0c4685d4c5dae813ab1394409bd | schema:name | Springer Nature - SN SciGraph project |
51 | ″ | rdf:type | schema:Organization |
52 | N99ff7e7dd0fe4fbe8e0e7bf1523f7405 | schema:name | dimensions_id |
53 | ″ | schema:value | pub.1146379934 |
54 | ″ | rdf:type | schema:PropertyValue |
55 | Nc277f8e56c194db394f00a912b0c5459 | rdf:first | sg:person.011462624533.85 |
56 | ″ | rdf:rest | Nd871b6308ce54598b3347e761bb403a2 |
57 | Nd871b6308ce54598b3347e761bb403a2 | rdf:first | sg:person.012205207751.49 |
58 | ″ | rdf:rest | rdf:nil |
59 | Nfc67624a4dd845b299337109447e7430 | schema:name | doi |
60 | ″ | schema:value | 10.1007/s00209-022-02972-2 |
61 | ″ | rdf:type | schema:PropertyValue |
62 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
63 | ″ | schema:name | Mathematical Sciences |
64 | ″ | rdf:type | schema:DefinedTerm |
65 | anzsrc-for:0101 | schema:inDefinedTermSet | anzsrc-for: |
66 | ″ | schema:name | Pure Mathematics |
67 | ″ | rdf:type | schema:DefinedTerm |
68 | sg:journal.1136443 | schema:issn | 0025-5874 |
69 | ″ | ″ | 1432-1823 |
70 | ″ | schema:name | Mathematische Zeitschrift |
71 | ″ | schema:publisher | Springer Nature |
72 | ″ | rdf:type | schema:Periodical |
73 | sg:person.011462624533.85 | schema:affiliation | grid-institutes:grid.253248.a |
74 | ″ | schema:familyName | Izzo |
75 | ″ | schema:givenName | Alexander J. |
76 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011462624533.85 |
77 | ″ | rdf:type | schema:Person |
78 | sg:person.012205207751.49 | schema:affiliation | grid-institutes:grid.34477.33 |
79 | ″ | schema:familyName | Stout |
80 | ″ | schema:givenName | Edgar Lee |
81 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012205207751.49 |
82 | ″ | rdf:type | schema:Person |
83 | sg:pub.10.1007/978-1-4612-4190-4 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1040723300 |
84 | ″ | ″ | https://doi.org/10.1007/978-1-4612-4190-4 |
85 | ″ | rdf:type | schema:CreativeWork |
86 | sg:pub.10.1007/978-1-4684-9449-5 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1048012041 |
87 | ″ | ″ | https://doi.org/10.1007/978-1-4684-9449-5 |
88 | ″ | rdf:type | schema:CreativeWork |
89 | sg:pub.10.1007/978-3-642-48016-4_26 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1007025461 |
90 | ″ | ″ | https://doi.org/10.1007/978-3-642-48016-4_26 |
91 | ″ | rdf:type | schema:CreativeWork |
92 | sg:pub.10.1007/bf01232438 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1035966561 |
93 | ″ | ″ | https://doi.org/10.1007/bf01232438 |
94 | ″ | rdf:type | schema:CreativeWork |
95 | sg:pub.10.1007/bf01378335 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1017968552 |
96 | ″ | ″ | https://doi.org/10.1007/bf01378335 |
97 | ″ | rdf:type | schema:CreativeWork |
98 | sg:pub.10.1007/bf01450512 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1035803905 |
99 | ″ | ″ | https://doi.org/10.1007/bf01450512 |
100 | ″ | rdf:type | schema:CreativeWork |
101 | grid-institutes:grid.253248.a | schema:alternateName | Department of Mathematics and Statistics, Bowling Green State University, 43403, Bowling Green, OH, USA |
102 | ″ | schema:name | Department of Mathematics and Statistics, Bowling Green State University, 43403, Bowling Green, OH, USA |
103 | ″ | rdf:type | schema:Organization |
104 | grid-institutes:grid.34477.33 | schema:alternateName | Department of Mathematics, University of Washington, 98195, Seattle, WA, USA |
105 | ″ | schema:name | Department of Mathematics, University of Washington, 98195, Seattle, WA, USA |
106 | ″ | rdf:type | schema:Organization |