Cohomology of non-pluriharmonic loci View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-28

AUTHORS

Yusaku Tiba

ABSTRACT

Let D be a pseudoconvex domain in Cn for n≥4. Let φ be an exhaustive plurisubharmonic function on D. We show that the direct limit of the cohomology of open sets which contain the support of i∂∂¯φ is equal to the cohomology of D in low degrees.

PAGES

1-12

References to SciGraph publications

  • 1976-02. The dirichlet problem for a complex Monge-Ampère equation in INVENTIONES MATHEMATICAE
  • 2000-09. A Sobolev mapping property of the Bergman kernel in MATHEMATISCHE ZEITSCHRIFT
  • Journal

    TITLE

    Mathematische Zeitschrift

    ISSUE

    N/A

    VOLUME

    N/A

    Author Affiliations

    From Grant

  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00209-019-02273-1

    DOI

    http://dx.doi.org/10.1007/s00209-019-02273-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1113060483


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "author": [
          {
            "affiliation": {
              "alternateName": "Ochanomizu University", 
              "id": "https://www.grid.ac/institutes/grid.412314.1", 
              "name": [
                "Department of Mathematics, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tiba", 
            "givenName": "Yusaku", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s002090000099", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023734373", 
              "https://doi.org/10.1007/s002090000099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cpa.3160300503", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051488389"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cpa.3160300503", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051488389"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01418826", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052156719", 
              "https://doi.org/10.1007/bf01418826"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01418826", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052156719", 
              "https://doi.org/10.1007/bf01418826"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/imrn/rnv111", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059691768"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1307/mmj/1028998225", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064975187"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1307/mmj/1029004997", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064976689"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5802/aif.1541", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1073137233"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4064/ap180423-14-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107595245"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-03-28", 
        "datePublishedReg": "2019-03-28", 
        "description": "Let D be a pseudoconvex domain in Cn for n\u22654. Let \u03c6 be an exhaustive plurisubharmonic function on D. We show that the direct limit of the cohomology of open sets which contain the support of i\u2202\u2202\u00af\u03c6 is equal to the cohomology of D in low degrees.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00209-019-02273-1", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.6839622", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1136443", 
            "issn": [
              "0025-5874", 
              "1432-1823"
            ], 
            "name": "Mathematische Zeitschrift", 
            "type": "Periodical"
          }
        ], 
        "name": "Cohomology of non-pluriharmonic loci", 
        "pagination": "1-12", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "e39f34b1e6469a54099c988d20118b75802d45c276a3f0704ae58981d468ced3"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00209-019-02273-1"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1113060483"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00209-019-02273-1", 
          "https://app.dimensions.ai/details/publication/pub.1113060483"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:19", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78959_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs00209-019-02273-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00209-019-02273-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00209-019-02273-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00209-019-02273-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00209-019-02273-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    74 TRIPLES      20 PREDICATES      30 URIs      16 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00209-019-02273-1 schema:author Nbc1a533e182c4fa6a65185f306162331
    2 schema:citation sg:pub.10.1007/bf01418826
    3 sg:pub.10.1007/s002090000099
    4 https://doi.org/10.1002/cpa.3160300503
    5 https://doi.org/10.1093/imrn/rnv111
    6 https://doi.org/10.1307/mmj/1028998225
    7 https://doi.org/10.1307/mmj/1029004997
    8 https://doi.org/10.4064/ap180423-14-8
    9 https://doi.org/10.5802/aif.1541
    10 schema:datePublished 2019-03-28
    11 schema:datePublishedReg 2019-03-28
    12 schema:description Let D be a pseudoconvex domain in Cn for n≥4. Let φ be an exhaustive plurisubharmonic function on D. We show that the direct limit of the cohomology of open sets which contain the support of i∂∂¯φ is equal to the cohomology of D in low degrees.
    13 schema:genre research_article
    14 schema:inLanguage en
    15 schema:isAccessibleForFree false
    16 schema:isPartOf sg:journal.1136443
    17 schema:name Cohomology of non-pluriharmonic loci
    18 schema:pagination 1-12
    19 schema:productId N04e6558a33d146da921e51959c25fec7
    20 N685b33f9de294774bf5feaf692237260
    21 Nc9c00ed56e8e4b128da4617321cd5646
    22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113060483
    23 https://doi.org/10.1007/s00209-019-02273-1
    24 schema:sdDatePublished 2019-04-11T13:19
    25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    26 schema:sdPublisher N74e76fee0a684fa09a8fec6c8df688fa
    27 schema:url https://link.springer.com/10.1007%2Fs00209-019-02273-1
    28 sgo:license sg:explorer/license/
    29 sgo:sdDataset articles
    30 rdf:type schema:ScholarlyArticle
    31 N04e6558a33d146da921e51959c25fec7 schema:name dimensions_id
    32 schema:value pub.1113060483
    33 rdf:type schema:PropertyValue
    34 N0aac1e1e963845608cd7b51608d99f6f schema:affiliation https://www.grid.ac/institutes/grid.412314.1
    35 schema:familyName Tiba
    36 schema:givenName Yusaku
    37 rdf:type schema:Person
    38 N685b33f9de294774bf5feaf692237260 schema:name doi
    39 schema:value 10.1007/s00209-019-02273-1
    40 rdf:type schema:PropertyValue
    41 N74e76fee0a684fa09a8fec6c8df688fa schema:name Springer Nature - SN SciGraph project
    42 rdf:type schema:Organization
    43 Nbc1a533e182c4fa6a65185f306162331 rdf:first N0aac1e1e963845608cd7b51608d99f6f
    44 rdf:rest rdf:nil
    45 Nc9c00ed56e8e4b128da4617321cd5646 schema:name readcube_id
    46 schema:value e39f34b1e6469a54099c988d20118b75802d45c276a3f0704ae58981d468ced3
    47 rdf:type schema:PropertyValue
    48 sg:grant.6839622 http://pending.schema.org/fundedItem sg:pub.10.1007/s00209-019-02273-1
    49 rdf:type schema:MonetaryGrant
    50 sg:journal.1136443 schema:issn 0025-5874
    51 1432-1823
    52 schema:name Mathematische Zeitschrift
    53 rdf:type schema:Periodical
    54 sg:pub.10.1007/bf01418826 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052156719
    55 https://doi.org/10.1007/bf01418826
    56 rdf:type schema:CreativeWork
    57 sg:pub.10.1007/s002090000099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023734373
    58 https://doi.org/10.1007/s002090000099
    59 rdf:type schema:CreativeWork
    60 https://doi.org/10.1002/cpa.3160300503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051488389
    61 rdf:type schema:CreativeWork
    62 https://doi.org/10.1093/imrn/rnv111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059691768
    63 rdf:type schema:CreativeWork
    64 https://doi.org/10.1307/mmj/1028998225 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064975187
    65 rdf:type schema:CreativeWork
    66 https://doi.org/10.1307/mmj/1029004997 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064976689
    67 rdf:type schema:CreativeWork
    68 https://doi.org/10.4064/ap180423-14-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107595245
    69 rdf:type schema:CreativeWork
    70 https://doi.org/10.5802/aif.1541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073137233
    71 rdf:type schema:CreativeWork
    72 https://www.grid.ac/institutes/grid.412314.1 schema:alternateName Ochanomizu University
    73 schema:name Department of Mathematics, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo, Japan
    74 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...