A categorical action on quantized quiver varieties View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-08-13

AUTHORS

Ben Webster

ABSTRACT

In this paper, we describe a categorical action of any symmetric Kac–Moody algebra on a category of quantized coherent sheaves on Nakajima quiver varieties. By “quantized coherent sheaves,” we mean a category of sheaves of modules over a deformation quantization of the natural symplectic structure on quiver varieties. This action is a direct categorification of the geometric construction of universal enveloping algebras by Nakajima. More... »

PAGES

1-29

References to SciGraph publications

Journal

TITLE

Mathematische Zeitschrift

ISSUE

N/A

VOLUME

N/A

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00209-018-2135-9

DOI

http://dx.doi.org/10.1007/s00209-018-2135-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106131214


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Perimeter Institute", 
          "id": "https://www.grid.ac/institutes/grid.420198.6", 
          "name": [
            "Department of Pure Mathematics, University of Waterloo, Waterloo, ON, Canada", 
            "Perimeter Institute for Mathematical Physics, Waterloo, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Webster", 
        "givenName": "Ben", 
        "id": "sg:person.016152235362.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016152235362.44"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00222-009-0227-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000718786", 
          "https://doi.org/10.1007/s00222-009-0227-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00222-009-0227-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000718786", 
          "https://doi.org/10.1007/s00222-009-0227-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00222-009-0227-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000718786", 
          "https://doi.org/10.1007/s00222-009-0227-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aim.2006.05.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006722202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00029-014-0162-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010524087", 
          "https://doi.org/10.1007/s00029-014-0162-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-8176-4523-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015468091", 
          "https://doi.org/10.1007/978-0-8176-4523-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-8176-4523-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015468091", 
          "https://doi.org/10.1007/978-0-8176-4523-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00208-015-1207-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017145117", 
          "https://doi.org/10.1007/s00208-015-1207-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00208-013-0921-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021723185", 
          "https://doi.org/10.1007/s00208-013-0921-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10114-014-3631-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023951002", 
          "https://doi.org/10.1007/s10114-014-3631-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0273-0979-09-01260-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028276368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/crelle.2011.184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028974496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/crelle.2011.068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029283732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aim.2012.06.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031147673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00031-016-9409-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033784027", 
          "https://doi.org/10.1007/s00031-016-9409-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00031-016-9409-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033784027", 
          "https://doi.org/10.1007/s00031-016-9409-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/s0010437x1100724x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036125319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/s0010437x1100724x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036125319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10240-007-0005-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036456932", 
          "https://doi.org/10.1007/s10240-007-0005-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00208-016-1438-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039276104", 
          "https://doi.org/10.1007/s00208-016-1438-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00208-016-1438-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039276104", 
          "https://doi.org/10.1007/s00208-016-1438-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0017089505002946", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040606954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1155/2010/978635", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042278689", 
          "https://doi.org/10.1155/2010/978635"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1049816955", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0073549", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049816955", 
          "https://doi.org/10.1007/bfb0073549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0073549", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049816955", 
          "https://doi.org/10.1007/bfb0073549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0894-0347-1991-1088333-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053506412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0894-0347-08-00612-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059339288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/ert/481", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059342161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/s0010437x1400760x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062054937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/s0010437x1400760x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062054937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s1005386712000247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063013099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1215/00127094-2008-043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064411122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1215/s0012-7094-94-07613-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064420021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1215/s0012-7094-98-09120-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064420386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4007/annals.2008.167.245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071867071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4171/qt/1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072319985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4171/qt/4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072320018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4310/cntp.2007.v1.n1.a1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072459428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/memo/1191", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091638239"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-08-13", 
    "datePublishedReg": "2018-08-13", 
    "description": "In this paper, we describe a categorical action of any symmetric Kac\u2013Moody algebra on a category of quantized coherent sheaves on Nakajima quiver varieties. By \u201cquantized coherent sheaves,\u201d we mean a category of sheaves of modules over a deformation quantization of the natural symplectic structure on quiver varieties. This action is a direct categorification of the geometric construction of universal enveloping algebras by Nakajima.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00209-018-2135-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136443", 
        "issn": [
          "0025-5874", 
          "1432-1823"
        ], 
        "name": "Mathematische Zeitschrift", 
        "type": "Periodical"
      }
    ], 
    "name": "A categorical action on quantized quiver varieties", 
    "pagination": "1-29", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0bf3d5e38c7b80ca7e9cd332b57cd555f599b6e399f3e4cfcd88d844e546e835"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00209-018-2135-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106131214"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00209-018-2135-9", 
      "https://app.dimensions.ai/details/publication/pub.1106131214"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89822_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00209-018-2135-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00209-018-2135-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00209-018-2135-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00209-018-2135-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00209-018-2135-9'


 

This table displays all metadata directly associated to this object as RDF triples.

162 TRIPLES      21 PREDICATES      56 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00209-018-2135-9 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nf427521cd16844a59900cd37b382e268
4 schema:citation sg:pub.10.1007/978-0-8176-4523-6
5 sg:pub.10.1007/bfb0073549
6 sg:pub.10.1007/s00029-014-0162-x
7 sg:pub.10.1007/s00031-016-9409-2
8 sg:pub.10.1007/s00208-013-0921-6
9 sg:pub.10.1007/s00208-015-1207-y
10 sg:pub.10.1007/s00208-016-1438-6
11 sg:pub.10.1007/s00222-009-0227-1
12 sg:pub.10.1007/s10114-014-3631-4
13 sg:pub.10.1007/s10240-007-0005-9
14 sg:pub.10.1155/2010/978635
15 https://app.dimensions.ai/details/publication/pub.1049816955
16 https://doi.org/10.1016/j.aim.2006.05.004
17 https://doi.org/10.1016/j.aim.2012.06.017
18 https://doi.org/10.1017/s0017089505002946
19 https://doi.org/10.1090/ert/481
20 https://doi.org/10.1090/memo/1191
21 https://doi.org/10.1090/s0273-0979-09-01260-9
22 https://doi.org/10.1090/s0894-0347-08-00612-7
23 https://doi.org/10.1090/s0894-0347-1991-1088333-2
24 https://doi.org/10.1112/s0010437x1100724x
25 https://doi.org/10.1112/s0010437x1400760x
26 https://doi.org/10.1142/s1005386712000247
27 https://doi.org/10.1215/00127094-2008-043
28 https://doi.org/10.1215/s0012-7094-94-07613-8
29 https://doi.org/10.1215/s0012-7094-98-09120-7
30 https://doi.org/10.1515/crelle.2011.068
31 https://doi.org/10.1515/crelle.2011.184
32 https://doi.org/10.4007/annals.2008.167.245
33 https://doi.org/10.4171/qt/1
34 https://doi.org/10.4171/qt/4
35 https://doi.org/10.4310/cntp.2007.v1.n1.a1
36 schema:datePublished 2018-08-13
37 schema:datePublishedReg 2018-08-13
38 schema:description In this paper, we describe a categorical action of any symmetric Kac–Moody algebra on a category of quantized coherent sheaves on Nakajima quiver varieties. By “quantized coherent sheaves,” we mean a category of sheaves of modules over a deformation quantization of the natural symplectic structure on quiver varieties. This action is a direct categorification of the geometric construction of universal enveloping algebras by Nakajima.
39 schema:genre research_article
40 schema:inLanguage en
41 schema:isAccessibleForFree true
42 schema:isPartOf sg:journal.1136443
43 schema:name A categorical action on quantized quiver varieties
44 schema:pagination 1-29
45 schema:productId N4029fec2d1a549b6b042f11afb15332f
46 N88e52ece187c49a49b322d1d8c776d49
47 Nf7034494a38e4fceb13d4d745f1b73bf
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106131214
49 https://doi.org/10.1007/s00209-018-2135-9
50 schema:sdDatePublished 2019-04-11T10:02
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher Nec13d631440843b49fdec00f74903e30
53 schema:url https://link.springer.com/10.1007%2Fs00209-018-2135-9
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N4029fec2d1a549b6b042f11afb15332f schema:name dimensions_id
58 schema:value pub.1106131214
59 rdf:type schema:PropertyValue
60 N88e52ece187c49a49b322d1d8c776d49 schema:name doi
61 schema:value 10.1007/s00209-018-2135-9
62 rdf:type schema:PropertyValue
63 Nec13d631440843b49fdec00f74903e30 schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 Nf427521cd16844a59900cd37b382e268 rdf:first sg:person.016152235362.44
66 rdf:rest rdf:nil
67 Nf7034494a38e4fceb13d4d745f1b73bf schema:name readcube_id
68 schema:value 0bf3d5e38c7b80ca7e9cd332b57cd555f599b6e399f3e4cfcd88d844e546e835
69 rdf:type schema:PropertyValue
70 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
71 schema:name Mathematical Sciences
72 rdf:type schema:DefinedTerm
73 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
74 schema:name Pure Mathematics
75 rdf:type schema:DefinedTerm
76 sg:journal.1136443 schema:issn 0025-5874
77 1432-1823
78 schema:name Mathematische Zeitschrift
79 rdf:type schema:Periodical
80 sg:person.016152235362.44 schema:affiliation https://www.grid.ac/institutes/grid.420198.6
81 schema:familyName Webster
82 schema:givenName Ben
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016152235362.44
84 rdf:type schema:Person
85 sg:pub.10.1007/978-0-8176-4523-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015468091
86 https://doi.org/10.1007/978-0-8176-4523-6
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/bfb0073549 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049816955
89 https://doi.org/10.1007/bfb0073549
90 rdf:type schema:CreativeWork
91 sg:pub.10.1007/s00029-014-0162-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1010524087
92 https://doi.org/10.1007/s00029-014-0162-x
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/s00031-016-9409-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033784027
95 https://doi.org/10.1007/s00031-016-9409-2
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/s00208-013-0921-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021723185
98 https://doi.org/10.1007/s00208-013-0921-6
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/s00208-015-1207-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1017145117
101 https://doi.org/10.1007/s00208-015-1207-y
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/s00208-016-1438-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039276104
104 https://doi.org/10.1007/s00208-016-1438-6
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/s00222-009-0227-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000718786
107 https://doi.org/10.1007/s00222-009-0227-1
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/s10114-014-3631-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023951002
110 https://doi.org/10.1007/s10114-014-3631-4
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/s10240-007-0005-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036456932
113 https://doi.org/10.1007/s10240-007-0005-9
114 rdf:type schema:CreativeWork
115 sg:pub.10.1155/2010/978635 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042278689
116 https://doi.org/10.1155/2010/978635
117 rdf:type schema:CreativeWork
118 https://app.dimensions.ai/details/publication/pub.1049816955 schema:CreativeWork
119 https://doi.org/10.1016/j.aim.2006.05.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006722202
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.aim.2012.06.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031147673
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1017/s0017089505002946 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040606954
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1090/ert/481 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059342161
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1090/memo/1191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091638239
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1090/s0273-0979-09-01260-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028276368
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1090/s0894-0347-08-00612-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059339288
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1090/s0894-0347-1991-1088333-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053506412
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1112/s0010437x1100724x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036125319
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1112/s0010437x1400760x schema:sameAs https://app.dimensions.ai/details/publication/pub.1062054937
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1142/s1005386712000247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063013099
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1215/00127094-2008-043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064411122
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1215/s0012-7094-94-07613-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064420021
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1215/s0012-7094-98-09120-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064420386
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1515/crelle.2011.068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029283732
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1515/crelle.2011.184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028974496
150 rdf:type schema:CreativeWork
151 https://doi.org/10.4007/annals.2008.167.245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071867071
152 rdf:type schema:CreativeWork
153 https://doi.org/10.4171/qt/1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072319985
154 rdf:type schema:CreativeWork
155 https://doi.org/10.4171/qt/4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072320018
156 rdf:type schema:CreativeWork
157 https://doi.org/10.4310/cntp.2007.v1.n1.a1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072459428
158 rdf:type schema:CreativeWork
159 https://www.grid.ac/institutes/grid.420198.6 schema:alternateName Perimeter Institute
160 schema:name Department of Pure Mathematics, University of Waterloo, Waterloo, ON, Canada
161 Perimeter Institute for Mathematical Physics, Waterloo, ON, Canada
162 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...