Proof of dynamical localization for perturbations of discrete 1D Schrödinger operators with uniform electric fields View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

César R. de Oliveira, Mariane Pigossi

ABSTRACT

We present a proof of discrete spectrum and dynamical localization for small perturbations of discrete one-dimensional Schrödinger operators with uniform electric fields. The proof of dynamical localization is based on the KAM technique.

PAGES

1-17

Journal

TITLE

Mathematische Zeitschrift

ISSUE

3-4

VOLUME

291

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00209-018-2103-4

DOI

http://dx.doi.org/10.1007/s00209-018-2103-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105927008


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "Federal University of S\u00e3o Carlos", 
          "id": "https://www.grid.ac/institutes/grid.411247.5", 
          "name": [
            "Departamento de Matem\u00e1tica, UFSCar, 13560-970, S\u00e3o Carlos, SP, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Oliveira", 
        "givenName": "C\u00e9sar R.", 
        "id": "sg:person.015306152053.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015306152053.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Federal University of S\u00e3o Carlos", 
          "id": "https://www.grid.ac/institutes/grid.411247.5", 
          "name": [
            "Departamento de Matem\u00e1tica, UFSCar, 13560-970, S\u00e3o Carlos, SP, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pigossi", 
        "givenName": "Mariane", 
        "id": "sg:person.012070052674.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012070052674.89"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00023-007-0334-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009273585", 
          "https://doi.org/10.1007/s00023-007-0334-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jfan.1996.0155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009963824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02787106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019469735", 
          "https://doi.org/10.1007/bf02787106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/spmi.1995.1115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034697362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01609485", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040883192", 
          "https://doi.org/10.1007/bf01609485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01609485", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040883192", 
          "https://doi.org/10.1007/bf01609485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02101896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042214762", 
          "https://doi.org/10.1007/bf02101896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02101896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042214762", 
          "https://doi.org/10.1007/bf02101896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0080334", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046888602", 
          "https://doi.org/10.1007/bfb0080334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01048846", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052591637", 
          "https://doi.org/10.1007/bf01048846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002200100460", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053046996", 
          "https://doi.org/10.1007/s002200100460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0129055x08003390", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062898137"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "We present a proof of discrete spectrum and dynamical localization for small perturbations of discrete one-dimensional Schr\u00f6dinger operators with uniform electric fields. The proof of dynamical localization is based on the KAM technique.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00209-018-2103-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136443", 
        "issn": [
          "0025-5874", 
          "1432-1823"
        ], 
        "name": "Mathematische Zeitschrift", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "291"
      }
    ], 
    "name": "Proof of dynamical localization for perturbations of discrete 1D Schr\u00f6dinger operators with uniform electric fields", 
    "pagination": "1-17", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "363ba2fb9b125570b843d34e49fcfce4408ca5d9a57e60b86a7712ec264d38c8"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00209-018-2103-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105927008"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00209-018-2103-4", 
      "https://app.dimensions.ai/details/publication/pub.1105927008"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000372_0000000372/records_117100_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00209-018-2103-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00209-018-2103-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00209-018-2103-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00209-018-2103-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00209-018-2103-4'


 

This table displays all metadata directly associated to this object as RDF triples.

97 TRIPLES      20 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00209-018-2103-4 schema:author N8f02f31039164efc9fad44b9a4cce12a
2 schema:citation sg:pub.10.1007/bf01048846
3 sg:pub.10.1007/bf01609485
4 sg:pub.10.1007/bf02101896
5 sg:pub.10.1007/bf02787106
6 sg:pub.10.1007/bfb0080334
7 sg:pub.10.1007/s00023-007-0334-8
8 sg:pub.10.1007/s002200100460
9 https://doi.org/10.1006/jfan.1996.0155
10 https://doi.org/10.1006/spmi.1995.1115
11 https://doi.org/10.1142/s0129055x08003390
12 schema:datePublished 2019-04
13 schema:datePublishedReg 2019-04-01
14 schema:description We present a proof of discrete spectrum and dynamical localization for small perturbations of discrete one-dimensional Schrödinger operators with uniform electric fields. The proof of dynamical localization is based on the KAM technique.
15 schema:genre research_article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf Nc43ddaf681b44873a94f95b113c3d531
19 Nd6f3c7996fba4779acdb6c147a0a4975
20 sg:journal.1136443
21 schema:name Proof of dynamical localization for perturbations of discrete 1D Schrödinger operators with uniform electric fields
22 schema:pagination 1-17
23 schema:productId N2c6539ae21ba4f7caedaf13c166bdf3f
24 N2e9edf2f1811468d86e35f420168622f
25 Ne18fd066811e43dc9b4eff9e27e2014e
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105927008
27 https://doi.org/10.1007/s00209-018-2103-4
28 schema:sdDatePublished 2019-04-11T14:18
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher N0256b4ff63254428985c6b1065300ccf
31 schema:url https://link.springer.com/10.1007%2Fs00209-018-2103-4
32 sgo:license sg:explorer/license/
33 sgo:sdDataset articles
34 rdf:type schema:ScholarlyArticle
35 N0256b4ff63254428985c6b1065300ccf schema:name Springer Nature - SN SciGraph project
36 rdf:type schema:Organization
37 N2c6539ae21ba4f7caedaf13c166bdf3f schema:name readcube_id
38 schema:value 363ba2fb9b125570b843d34e49fcfce4408ca5d9a57e60b86a7712ec264d38c8
39 rdf:type schema:PropertyValue
40 N2e9edf2f1811468d86e35f420168622f schema:name dimensions_id
41 schema:value pub.1105927008
42 rdf:type schema:PropertyValue
43 N6a48c9cb25744d4bb8d63ea0e202260e rdf:first sg:person.012070052674.89
44 rdf:rest rdf:nil
45 N8f02f31039164efc9fad44b9a4cce12a rdf:first sg:person.015306152053.56
46 rdf:rest N6a48c9cb25744d4bb8d63ea0e202260e
47 Nc43ddaf681b44873a94f95b113c3d531 schema:issueNumber 3-4
48 rdf:type schema:PublicationIssue
49 Nd6f3c7996fba4779acdb6c147a0a4975 schema:volumeNumber 291
50 rdf:type schema:PublicationVolume
51 Ne18fd066811e43dc9b4eff9e27e2014e schema:name doi
52 schema:value 10.1007/s00209-018-2103-4
53 rdf:type schema:PropertyValue
54 sg:journal.1136443 schema:issn 0025-5874
55 1432-1823
56 schema:name Mathematische Zeitschrift
57 rdf:type schema:Periodical
58 sg:person.012070052674.89 schema:affiliation https://www.grid.ac/institutes/grid.411247.5
59 schema:familyName Pigossi
60 schema:givenName Mariane
61 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012070052674.89
62 rdf:type schema:Person
63 sg:person.015306152053.56 schema:affiliation https://www.grid.ac/institutes/grid.411247.5
64 schema:familyName de Oliveira
65 schema:givenName César R.
66 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015306152053.56
67 rdf:type schema:Person
68 sg:pub.10.1007/bf01048846 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052591637
69 https://doi.org/10.1007/bf01048846
70 rdf:type schema:CreativeWork
71 sg:pub.10.1007/bf01609485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040883192
72 https://doi.org/10.1007/bf01609485
73 rdf:type schema:CreativeWork
74 sg:pub.10.1007/bf02101896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042214762
75 https://doi.org/10.1007/bf02101896
76 rdf:type schema:CreativeWork
77 sg:pub.10.1007/bf02787106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019469735
78 https://doi.org/10.1007/bf02787106
79 rdf:type schema:CreativeWork
80 sg:pub.10.1007/bfb0080334 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046888602
81 https://doi.org/10.1007/bfb0080334
82 rdf:type schema:CreativeWork
83 sg:pub.10.1007/s00023-007-0334-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009273585
84 https://doi.org/10.1007/s00023-007-0334-8
85 rdf:type schema:CreativeWork
86 sg:pub.10.1007/s002200100460 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053046996
87 https://doi.org/10.1007/s002200100460
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1006/jfan.1996.0155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009963824
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1006/spmi.1995.1115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034697362
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1142/s0129055x08003390 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062898137
94 rdf:type schema:CreativeWork
95 https://www.grid.ac/institutes/grid.411247.5 schema:alternateName Federal University of São Carlos
96 schema:name Departamento de Matemática, UFSCar, 13560-970, São Carlos, SP, Brazil
97 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...